o B o

SN

Context Constrained Computation

Robert Atkey
Computer and Information Sciences
University of Strathclyde
robert.atkey@strath.ac.uk

1 Introduction

In normal typed A-calculi, variables may be used multiple
times, in multiple contexts, for multiple reasons, as long
as the types agree. The disciplines of linear types [4] and
coeffects [2, 3, 5] refine this by tracking how variables are
used. For instance, we might track how many times a variable
is used, or whether it is used covariantly, contravariantly,
or invariantly. Such a discipline yields a general framework
of “context constrained computing”, where constraints on
variables in the context tell us something interesting about
the computation being performed.

We will present work in progress on capturing the “inten-
sional” properties of programs via a family of Kripke indexed
relational semantics that refines a simple set-theoretic se-
mantics of programs. The value of our approach lies in its
generality. We can accommodate the following examples:

1. Linear types that capture properties like “all list ma-
nipulating programs are permutations”. This example
uses the Kripke-indexing to track the collection of da-
tums currently being manipulated by the program.

2. Monotonicity coeffects that track whether a program
uses inputs co-, contra-, or in-variantly (or not at all).

3. Sensitivity typing, that tracks how sensitive the output
of the program is in terms of changes to the input. This
forms the core of systems for differential privacy [7].

4. Information flow typing, in the style of the Depen-
dency Core Calculus [1].

Through discusssion at the workshop, we hope to discover
more applications of our framework. In future work, we
plan to extend our framework with type dependency, and
to explore the space of inductive data types and elimination
principles possible in the presence of usage information.

The syntax and semantics we present here have been for-
malised in Agda: https://github.com/laMudri/quantitative/.
Formalisation of the examples is in progress.

2 Syntax and Typing

We define our type system with respect to a partially ordered
semiring R for tracking how variables are used. A partially or-
dered semiring (R, <,0,+,1,) is a poset (R, <), commutative
monoid (R, 0, +), and monoid (R, 1, -), such that - distributes
over 0 and +, and + and - are monotonic with respect to <.
We take p, 7 € R.

PL’18, January 01-03, 2018, New York, NY, USA
2018.

James Wood
Computer and Information Sciences
University of Strathclyde
james.wood.100@strath.ac.uk

Examples 1. The zero-one-many semiring {0, 1, w} simu-
lates linear typing in our system. 2. Monotonicity typing uses
the semiring with carrier {0, T, |, =}, where the multiplica-
tive unit is T (covariance). The | represents contra-variance,
and = represents invariance. 3. Sensitivity analysis uses the
semiring with carrier R U {co} with min and + as the addi-
tion and multiplication. 4. Information flow analysis uses the
semiring with carrier P (L), where L is some set of labels.

The base language we consider is a bidirectional [6] simply
typed A calculus with the following types, where | ranges
over some set of base types:

STu=8S—oT|!1,S|1|SQ®T|T|S&T|0|S®T]|!

Bidirectional typing type annotations required. Since our
language is bidirectionally typed, we have two syntactic cat-
egories of terms: e ranges over checked terms, and s ranges
over synthesising terms. We use ¢ for both.

s == Ax.s | bang s | *g | (s0,51)e | *& | (50,51)a | inj;(s) | e
ex=x|es|bmr(e, {x}s) | delr(e,s) | pmy(e, {x, y}s)
| proj;(e) | ex-falsor(e) | caser(e, {x}so, {y}s1) [s:S

where curly braces and A denote variable binding and we
take i € {0, 1} wherever it appears.

Contexts I assign to each variable a type S and a usage p €
RT =x £ Sty Xn Pr S,,. Contexts whose variables and
types match form a left R-semimodule, by pointwise addition
and scaling of the usage annotations. The partial order on
R is extended pointwise to contexts. Typing judgements for
checked and synthesising terms have the same contexts, but
either record that a term is checked againstatype (' + T 5 S)
or synthesise a type (I' + e € T).

The typing rules consist of a variable rule, two rules for
change of direction, and introduction and elimination rules
for each type former. The following rules for variables, func-
tion introduction and elimination, and !, introduction illus-
trate how usage information is tracked:

I <Ol,x:S,00 [x'S+T > sx]

F'rxeSs I'+tS — T > Ax.s[x]
IHreeS—T ILrS>s I'<hi+1
T'rteseT
ILFS>s FSpTl

I'+1,5 3 bang s

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105
106
107
108
109
110

https://github.com/laMudri/quantitative/

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

PL’18, January 01-03, 2018, New York, NY, USA

Sub-resourcing, weakening (adding 0-use variables to the
context) and substitution are all admissible. In our Agda
formalisation, we have constructed our type system in two
levels: a non-usage tracked simply-typed A-calculus, with a
usage-tracking system layered above. This emphasises the
use of coeffect annotations as an analysis of programs, they
do not affect the underlying semantics, but comment on it.
We introduce our semantic framework in the next section.

3 Semantics

Underlying Semantics We give a standard semantics of
types and well typed terms into sets and functions. This
semantics ignores the usage information. For types, we have:

[= A

[S —T] =[s] - [T] ['pS] =1[5]

[=[T=t) [SeT]=[s&T]=[sIx[T]
[o] =0 [seT] =[S]w[T]

Contexts are interpreted as left-nested products. Terms are
assigned the usual semantics as functions [[t] : [T] — [S].

Usage-tracking semantics To derive interesting proper-
ties from our type system, we refine the set-theoretic se-
mantics by Kripke-indexed binary relations. This gives a
fundamental lemma for our system, that when instantitated
in different ways captures the examples in the introduction.

Our framework is parameterised by a category ‘W of pos-
sible worlds that track how resources are distributed by pro-
grams. To interpret resource separation, we assume that W
has symmetric promonoidal structure: profunctors J : 1 + W
and P : WXW -» W suchthat PO(JX1) = 1,PO(1x]) = 1,
PoO(1xP)=PO(Px1),and P = PO (i, X m), and the
triangle, pentagon, and hexagon laws hold’.

We now assign to each type T a functor [T]R : WP —
Rel [T] that captures a notion of ‘W-indexed “indistinguisha-
bility”. To interpret !,S, we assume we are given a relation
transformer !4 : R — Rel(A)"” — Rel(A)W* that sat-
isfies the axioms of a monoidal exponential comonad. The
interesting cases are for functions, ®-products and the !,
modality:

[S — TI®w (f.f) =

Vx,y. P(y, w)x = Vs,s". [S[Ry(s,s") = [T]Rx(f s, f's")
[S® TTR w ((5.1), (5",)) =

Ax,y. P(x, y)w A [S]Rx(s,s") A [T]Ry(t, t")
[1pSIR w (s, s”) = 1,[S]R w (s, s)

Contexts x; A Siy.. . Xn Pr S, are interpreted as if they
were [(--- (1®!,,51) - - -®!,,,S,)]. With these definitions, we
can prove the following fundamental lemma for our Kripke-
indexed relational semantics.

Theorem 3.1 (Fundamental Lemma).
Tre:T = [[[*w(.y) = [T ([t]y. [1]y")

!We don’t need the laws to hold to prove the fundamental lemma.

Robert Atkey and James Wood

Example Instantiations The ingredients of our funda-
mental lemma are perhaps well known (relational interpre-
tations, Kripke-indexing), but the value of our framework
lies in the generality of being able to choose W and its
promonoidal structure, and the interpretion the !, modality
as a relation transformer. Examples include:

Permutation Types With the {0, 1, 0} semiring, we take
the category ‘W to consist of lists of some type of keys,
and permutations between them. The relation transformer is
defined as: |oR [= T, where T is the total relation, {RIl = R
and R, R = (I = []) A R . With suitable types of keys and
lists of keys, the fundamental lemma states that all programs
are permutations. This result has already been formalised
in a one-off type system at https://github.com/bobatkey/
sorting-types.

Monotonicity Types With R the partially ordered semiring
with carrier {0, T, |,=} ordered= < 7, and 1, | < 0, we take
‘W to be the one-object, one-arrow category, and define the
relation transformer ! to be:

tR=R ! R=R

If we let our base type be natural numbers with the relational
interpretation Ry (n,n’) © n < n’, then the fundamental

WR=T '=R=RNR?

lemma states that a program of type x " nat + ¢ : natis
covariant (and similarly for contravariant and invariant).
Sensitivity Analysis With the R = R U {co} semiring, we
let ‘W be R as well. The relation transformer is given by
scaling. With a base type of real numbers with relational
intepretation Ry, k (x,x") & |x — x’| < k, then the funda-
mental lemma states that the usage annotations on the input
variables tracks the extent to which the program is sensitive
to changes in those variables.

Information Flow With the R = P (L) semiring, we again
take ‘W = R, and let the relation transformer tobe !; R’ =
{T when [> I’; R otherwise}. Then the fundamental lemma
yields the same non-interference properties as stated by
Abadi et al. for the DCC [1].

Acknowledgments
James Wood is supported by a EPSRC Studentship.

References

[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. 1999. A Core
Calculus of Dependency. In POPL ’99. 147-160.

[2] A. Brunel, M. Gaboardi, D. Mazza, and S. Zdancewic. 2014. A Core
Quantitative Coeffect Calculus. In ESOP 2014. 351-370.

[3] Dan R. Ghica and Alex I. Smith. 2014. Bounded Linear Types in a
Resource Semiring. In ESOP 2014. 331-350.

[4] Jean-Yves Girard. 1987. Linear Logic. Theor. Comp. Sci. 50 (1987), 1-101.

[5] Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. 2014. Coeffects:
a calculus of context-dependent computation. In ICFP 2014. 123-135.

[6] Benjamin C. Pierce and David N. Turner. 2000. Local type inference.
ACM TOPLAS 22, 1 (2000), 1-44.

[7] J. Reed and B. C. Pierce. 2010. Distance Makes the Types Grow Stronger.
In ICFP 2010, P. Hudak and S. Weirich (Eds.). 157-168.

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

208
209
210
211
212
213
214
215
216
217
218
219
220

https://github.com/bobatkey/sorting-types
https://github.com/bobatkey/sorting-types

	1 Introduction
	2 Syntax and Typing
	3 Semantics
	Acknowledgments
	References

