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Abstract. Mechanisation of programming language research is of grow-
ing interest, and the act of mechanising type systems and their metathe-
ory is generally becoming easier as new techniques are invented. However,
state-of-the-art techniques mostly rely on structurality of the type system
— that weakening, contraction, and exchange are admissible and vari-
ables can be used unrestrictedly once assumed. Linear logic, and many
related subsequent systems, provide motivations for breaking some of
these assumptions.

We present a framework for mechanising the metatheory of certain sub-
structural type systems, in a style resembling mechanised metatheory of
structural type systems. The framework covers a wide range of simply
typed syntaxes with semiring usage annotations, via a metasyntax of
typing rules. The metasyntax for the premises of a typing rule is related
to bunched logic, featuring both sharing and separating conjunction,
roughly corresponding to the additive and multiplicative features of lin-
ear logic. We use the uniformity of syntaxes to derive type system-generic
renaming, substitution, and a form of linearity checking.

Keywords: Formalised syntax · substructural types · mechanised metathe-
ory · quantitative typing

1 Introduction

In this paper, we treat the metatheory of a class of substructural type systems
related to linear logic [11]. This class is variously known as coeffectful [17, 18],
quantitative [4, 7], or resource-aware [10], or is given no particular name [1, 19],
and generalises bounded linear logic to track variable usage with semiring an-
notations. In all of these systems, we have some ambient semiring R, and in
the judgements of the type system, variables are annotated by elements of R
describing how that variable can be used. The additive structure of R gives the
ability to count, or otherwise accumulate, usages of variables in multiple sub-
terms. The multiplicative structure gives rise to a form of modality, for example
allowing multiple or unlimited reuse, or movement between security levels, in
the type system.
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The aspect of such systems we tackle here is their basic metatheory and
mechanisation thereof.

We build upon both the general structural framework of Allais et al. [3]
and the substructural techniques of Wood and Atkey [21]. The way Allais et al.
consolidate and codify mechanisation techniques for propositional natural de-
duction systems based on intrinsically typed syntax and de Bruijn indices, we
aim to replicate for linear-like systems based on semiring usage annotations. By
picking a trivial semiring, our work can subsume that of Allais et al., except for
the many pieces of machinery we have not yet ported to this new framework.

Our work complements that of Orchard et al. [17] on the Granule program-
ming language. Where Granule focuses on writing programs in the language and
running them, we focus on metatheoretic reasoning about type systems.

Our work is similar in scope to that of Licata et al. [13], though we work
in a natural deduction style rather than a sequent calculus style. Where Licata
et al. are much more agnostic in terms of substructurality — allowing for non-
commutative and bunched logics — we are much more agnostic in terms of
syntax. The system of Licata et al. is essentially a single calculus, supporting
“product” (F) types and “function” (U) types, parametrised on a mode theory
describing its structural rules. For this system, they derive the strong result of cut
elimination. Meanwhile, we leave syntax design to the user, and consequently can
only guarantee substitution (which we can only get because of our commitment
to natural deduction).

This paper proceeds as follows. In section 2, we review and fix conventions
pertaining to partially ordered semirings and vectors over them. In section 3, we
introduce an informal meta-syntax allowing us to state substructural typing rules
succinctly and without explicit reference to contexts. In section 4, we mechanise
that meta-syntax, giving a type of descriptions of type systems, and interpreting
those descriptions as types of intrinsically typed terms. In section 5, we discuss
usage-aware environments: a generalisation of the structures used in simulta-
neous renaming and substitution proofs. We use environments in section 6 to
state an alternative elimination principle for terms, and give examples of such
eliminations in section 7. The examples are syntax-generic renaming and substi-
tution, a specific denotational semantics, and a syntax-generic usage elaborator.
Finally, we conclude and discuss future work in section 8

The work presented in this paper has been mechanised in Agda, with the
code available for building upon [22].

2 Vectors over semirings

The basic algebraic structure we deal with is partially ordered semirings, or
posemirings for short. A posemiring is a (not necessarily commutative) semiring
on a partially ordered set, where both operations are monotonic. As in many
similar formalisms, posemiring elements represent usage restrictions, with ad-
dition collecting restrictions from multiple uses, multiplication handling usage
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under a modality, and the order giving subsumption of restrictions, comparable
to subtyping.

Definition 1. A posemiring is a tuple (R,≤, 0,+, 1, ∗) such that (R,≤) is a
partially ordered set, (R, 0,+) is a commutative monoid, (R, 1, ∗) is a monoid,
+ and ∗ are monotonic, and ∗ distributes over 0 and + on both sides.

Example 1 (Zero-one-many). The poset {0 > ω < 1} forms a posemiring under
normal numeric addition (with 1 + 1 = 1 + ω = ω + ω = ω) and multiplication
(with ω ∗ ω = ω). This gives us a way to mark whether variables are unused
(0), used linearly (1), or used unrestrictedly (ω) in the current (sub)term. The
ordering says that unrestricted-use variables can also remain unused or be used
linearly.

Example 2 (Variance). The set {∼∼, ↑↑, ↓↓, ??}, with ∼∼ at the bottom and
?? at the top of the order, forms a posemiring with addition being meet, 0 being
top (??), 1 being ↑↑, and multiplication being commutative and determined
by ↓↓ ∗ ↓↓ = ↑↑ and ∼∼ ∗ ↓↓ = ∼∼ ∗ ∼∼ = ∼∼. This gives us a way to
track the variance with which variables are used, in the aim of all terms being
monotonic in their free variables. ↑↑ stands for covariance, ↓↓ for contravariance,
∼∼ for invariance, and ?? for a variable with no guarantees, in which we must
be constant.

An element of a chosen posemiring R describes the usage restrictions on a
variable. Therefore, a vector of elements from R describes the usage restrictions
of a whole context’s worth of variables. From the posemiring operations of R,
we derive the standard vector operations of zero, addition, and multiplication
by a scalar. We can also form the standard basis vectors at any given dimension.
From the order on R, we get a pointwise order on vectors.

Vectors of a given length form a module over the posemiring R, analogously
to how vectors over a field form a vector space. The partial order on such vectors
is pointwise.

Definition 2. A (left) module over a posemiring, given a posemiring R, is a
partially ordered commutative monoid (M, 0M ,+M ) with, for each r ∈ R, a
pomonoid morphism r · (−) : M → M , such that the collection of these respects
the posemiring structure on r. Specifically, for all instantiations of the variables:

– If r ≤ r′ and u ≤ u′, then r · u ≤ r′ · u′.
– r · 0M = 0M and r · (u+M v) = r · u+M r · v.
– 0 · u = 0M and (r + s) · u = r · u+M s · u.
– 1 · u = u and (r ∗ s) · u = r · (s · u).

We care to define modules so as to define module morphisms, also known
as linear maps, which we use extensively when relating two contexts (as we
do, for example, in simultaneous substitution). For the sake of mechanisation,
we choose to define module morphisms relationally rather than functionally,
giving a somewhat unfamiliar-looking definition that is equivalent to the usual
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functional definition. The main advantage of this relational approach is that
proofs of relatedness for typical linear maps compose and decompose via data
constructors and pattern matching.

Definition 3. A (relational) linear map Ψ between modules M and N over a
posemiring R is a relation ∼ on the underlying sets of M and N satisfying the
following laws (with → standing for implication and quantifiers binding most
loosely).

– ∀u, u′, v, v′. u ≤ u′ → v′ ≤ v → u ∼ v → u′ ∼ v′

– ∀v. (∃u. u ≤ 0 ∧ u ∼ v) → v ≤ 0
– ∀u0, u1, v. (∃u. u ≤ u0 + u1 ∧ u ∼ v) →

(∃v0, v1. u0 ∼ v0 ∧ u1 ∼ v1 ∧ v ≤ v0 + v1)
– ∀r, u′, v. (∃u. u ≤ ru′ ∧ u ∼ v) → (∃v′. u′ ∼ v′ ∧ v ≤ rv′)
– ∀u. ∃v. u ∼ v ∧ ∀v′. u ∼ v′ → v′ ≤ v

Intuitively, Q ∼ P , where P and Q are row vectors, is equivalent to P ≤ QΨ ,
where Ψ is the matrix representing the linear map and on the right is a vector-
matrix multiplication. It is important that we think of row vectors and right-
multiplication by a matrix because, without commutativity of the underlying
posemiring, we can only expect (rQ)Ψ = r(QΨ) and not Ψ(rQ) = r(ΨQ). In
section 5, we use the matrix notation for convenience, while in the Agda code
we see Ψ .rel P Q .

3 Bunched Typing Rules

We now let R be an arbitrary posemiring. Our framework represents well typed
and R-usaged terms intrinsically. Intrinsic typing means that we represent well
typed and R-usaged terms (and only those) as inhabitants of an inductive family
Rγ ⊢ A indexed by usage context R, type context γ, and type A. We represent
the shape of a context as a nullary-binary tree, with typing and usage contexts
being functions that assign types and elements of R, respectively, to leaves of
the tree. Using trees instead of lists for typing contexts has the advantage that
extension of a context by multiple variables does not lead to complex count-
ing arguments to access the pre-existing variables, because context extension is
(judgementally) injective. However, these precise details will eventually become
irrelevant, as we will be able to use simultaneous renaming to smooth over any
structural differences between contexts.

Figure 1 presents a prototypical example of a system that our framework
can represent, which is a subsystem of the λR system of Wood and Atkey [21].
Each rule is given as a constructor: the premises are named p, s, t, etc., and
the conclusion is a constructor applied to those metalanguage variables. Object
language variables are represented intrinsically as members of the type Rγ ⊐− A,
which is a proof that the type A appears in the typing context, i : γ ∋ A, together
with a proof that R ≤ ⟨i|. Expanding the vector notation, the latter condition
says that the selected variable i must have a usage annotation ≤ 1 in R, while
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x : Rγ ⊐− A

var x : Rγ ⊢ A

t : Rγ, 1A ⊢ B

⊸I t : Rγ ⊢ A ⊸ B
p : R ≤ P +Q

s : Pγ ⊢ A ⊸ B
t : Qγ ⊢ A

⊸E p s t : Rγ ⊢ B

t : Rγ ⊢ Ai

⊕Ii t : Rγ ⊢ A0 ⊕A1

p : R ≤ P +Q
s : Pγ ⊢ A⊕B

t : Qγ, 1A ⊢ C
u : Qγ, 1B ⊢ C

⊕E p s t u : Rγ ⊢ C

p : R ≤ rP t : Pγ ⊢ A

!I p t : Rγ ⊢ !rA
p : R ≤ P +Q

s : Pγ ⊢ !rA
t : Qγ, rA ⊢ C

!E p s t : Rγ ⊢ C

Fig. 1. A prototypical posemiring-usaged system

all other variables must have a usage annotation ≤ 0. We use the constructors
↙ and ↘ to describe a path down the nullary-binary tree, terminated by the
word here. The var rule imports variables into terms.

The remaining rules are the introduction and elimination rules for three type
constructors: ⊸I and ⊸E for function types A ⊸ B where the bound variable
is annotated with 1 for “use once”; ⊕I and ⊕E for sum types A⊕B; and !I and
!E for a R-annotated exponential modality !rA.

There are two key observations to make about this system, which will guide
the way we build our generic framework for R-annotated substructural systems:

1. Every rule repeats the typing context γ throughout its premises and con-
clusion. The only time the typing context is modified is to add additional
variables in the rules that bind fresh variables (⊸I, ⊕E, !E).

2. Rules with multiple typing premises must describe how the usages of the
conclusion (always denoted R) are distributed across the premises. In the
⊸E rule, the usages are separated into two parts P and Q for the premises.
This is an example of a multiplicative rule in the terminology of Linear Logic
[11]. In the ⊕E we see an example of an additive rule, where the usage context
Q is shared between the premises t and u1. The !I rule uses scaling by r of
the usages of the premise.

These observations indicate a way to regularise and streamline the presenta-
tion of this system. Instead of treating each premise and the conclusion as having
potentially unrelated typing and usage constraints, we make use of combinators
for combining premises that will relate their usage and typing contexts to the
conclusion by construction. This idea comes from the work of Rouvoet et al.
[20], including the →̇ and −∗ connectives we use later. To handle binders, which
introduce variables, we make use of a combinator that adds a variable with a
given R-annotation to an ambient context, without having to explicitly mention

1 There is an unfortunate clash of terminology here: multiplicative rules add their
usage contexts, while additive rules share their usage contexts.
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the parts of the context that have not changed. This technique is already present
in some paper presentations of type systems, and is formalised by Allais et al.
[3]. To manage how usage annotations are distributed between premises, we use
the separating (∗) and sharing (×̇) conjunction connectives from Bunched Im-
plications [16]. To handle the !I rule, we will need a scaling modality, r · −. The
semantics of the bunched connectives we will use in this paper are:

1̇R := 1

(T ×̇ U)R := T R× U R
(T →̇ U)R := T R → U R

I∗ R := R ≤ 0

(T ∗ U)R := ΣP,Q. (R ≤ P +Q)× T P × U Q
(T −∗ U)P := ΠQ,R. (R ≤ P +Q) → T Q → U R

(r · T )R := ΣP. (R ≤ rP)× T P.

The function connectives →̇ and −∗ are not used in typing rules, but are used
in the rest of the framework (though one can interpret the horizontal line in a
typing rule as →̇ plus universal quantification). An important point to note is
that bunched combinators induce linear combinations of substructures, in the
sense of the linear algebra of posemirings described in the previous section.

x : ⊐− A

var x : ⊢ A

t : 1A ⊢ B

⊸I t : ⊢ A ⊸ B

(t : ⊢ A ⊸ B) ∗ (s : ⊢ A)

⊸E t s : ⊢ B

t : ⊢ Ai

⊕Ii t : ⊢ A0 ⊕A1

(s : ⊢ A⊕B) ∗ ((t : 1A ⊢ C) ×̇ (u : 1B ⊢ C))

⊕E s t u : ⊢ C

t : r · (⊢ A)

!I t : ⊢ !rA

(s : ⊢ !rA) ∗ (t : rA ⊢ C)

!E s t : ⊢ C

Fig. 2. The prototypical system of figure 1 restated in terms of bunched combinators.

Figure 2 shows our prototypical system restated with implicit contexts and
the bunched combinators. The inductive family is now denoted ⊢ A, only men-
tioning context extensions, as we do in the rules ⊸I, ⊕E and !E. Thus, in the
var rule, the context is completely suppressed. The ⊸I rule just has to state
that a new variable with usage annotation 1 and type A is added to the con-
text. The ⊸E rule uses the separating conjunction (∗) to combine the premises,
indicating that the usages of the two premises are added together for the conclu-
sion. The ⊕E rule demonstrates the sharing conjunction ×̇: the scrutinee term s
and the clause terms t, u are combined by separating conjunction, because their
usages must be combined, but the clause terms are combined by the sharing
conjunction, because they have the same usage context.

Bunched combinators, along with suppression of unchanged typing contexts,
leads to a more streamlined presentation of the system without the clutter of
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explicit usage context inequalities. However, the larger advantage for us is that
systems are constructed using these combinators automatically admit renaming,
substitution, and other scope-, type-, and usage-safe traversals. If we were to
allow arbitrary modification of the context in premises, these results would not
be possible, since there would be no guarantee that a substitution (for instance)
could be “pushed” up from a conclusion to the premises. As we will see in
section 5, our generic notion of environment (e.g., a simultaneous substitution)
is based around linear transformations, and so automatically commutes with the
linear combinations of premises induced by the bunched connectives. This is the
key to our generic results for all of the systems describable in our framework.

4 Generic syntax

We take the insights of the previous section and use them to build a generic
framework for posemiring-annotated substructural systems in Agda. We will first
show descriptions of systems, which are comprised of rules that have premises
combined using the bunched combinators. We then show how to construct the
Agda data type of intrinsically well scoped, typed, and resourced terms for any
given system of our framework. We use the prototypical system from figure 2 as
a running example. Section 4.3 presents further examples that our framework
can express.

We now start to use Agda notation for record and data type declarations, to
emphasise that our framework has been implemented.

4.1 Descriptions of Systems

A type System is made up of multiple Rules. Each Rule comprises a Premises and
a conclusion type. We assume that there is a Ty : Set of types for the system in
scope.

The Premise data type describes premises of rules, using the bunched combi-
nators from section 3. A single premise is introduced by the ⟨ ‘⊢ ⟩ constructor.
This allows binding of additional variables ∆ (with specified types and usage
annotations) and the specification of a conclusion type A for this premise. The
remaining constructors are descriptions for the bunched connectives.

data Premises : Set where
⟨ ‘⊢ ⟩ : (∆ : Ctx) (A : Ty) → Premises
‘1̇ : Premises; ‘×̇ : (p q : Premises) → Premises
‘I∗ : Premises; ‘∗ : (p q : Premises) → Premises
‘· : (r : Ann) (p : Premises) → Premises

A Rule is a pair of some Premises and a conclusion. We use an infix arrow as
a suggestive notation for rules.

record Rule : Set where
constructor =⇒
field premises : Premises; conclusion : Ty
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Finally, a System consists of a set of rule labels (i.e., constructor names), and
for each label a description of the corresponding rule. We use ▷ as infix notation
for systems to associate the label set with the rules.

record System : Set1 where
constructor ▷
field Label : Set; rules : (l : Label) → Rule

As an example, we transcribe the system defined in figure 2 into a descrip-
tion. We give the set of types of this system as a data type Ty (together with a
base type ι). We assume that there is a posemiring Ann in scope for the anno-
tations.There is one label for each instantiation of a logical rule, but the labels
contain no further information about subterms or restrictions on the context.
This will be provided when we associate labels with Rules in a System.

data Ty : Set where
ι : Ty
⊸ ⊕ : (A B : Ty) → Ty
! : (r : Ann) (A : Ty) → Ty

data Side : Set where ll rr : Side

data ‘λR : Set where
‘⊸I ‘⊸E : (A B : Ty) → ‘λR
‘⊕I : (i : Side) (A B : Ty) → ‘λR
‘⊕E : (A B C : Ty) → ‘λR
‘!I : (r : Ann) (A : Ty) → ‘λR
‘!E : (r : Ann) (A C : Ty) → ‘λR

To build a system, we associate with each label a rule:

λR : System
λR = ‘λR ▷ λ where
(‘⊸I A B) → ⟨ [ 1# · A ]c ‘⊢ B ⟩ =⇒ (A ⊸ B)
(‘⊸E A B) → (⟨ []c ‘⊢ A ⊸ B ⟩ ‘∗ ⟨ []c ‘⊢ A ⟩) =⇒ B
(‘!I r A) → (r ‘· ⟨ []c ‘⊢ A ⟩) =⇒ (! r A)
(‘!E r A C ) → (⟨ []c ‘⊢ ! r A ⟩ ‘∗ ⟨ [ r · A ]c ‘⊢ C ⟩) =⇒ C
(‘⊕I ll A B) → ⟨ []c ‘⊢ A ⟩ =⇒ (A ⊕ B)
(‘⊕I rr A B) → ⟨ []c ‘⊢ B ⟩ =⇒ (A ⊕ B)
(‘⊕E A B C ) →
⟨ []c ‘⊢ A ⊕ B ⟩ ‘∗ (⟨ [ 1# · A ]c ‘⊢ C ⟩ ‘×̇ ⟨ [ 1# · B ]c ‘⊢ C ⟩) =⇒ C

Compared to figure 2, modulo the Agda notation, we can see that the fun-
damental structure has been preserved: the rules match one-to-one, and the
bunched premises are the same. A major difference is that we do not include a
counterpart to the var rule in a System. Variables are common to all the systems
representable in our framework.

4.2 Terms of a System

The next thing we want to do is to build terms in the described type system.
The following definitions are useful for talking about types indexed over con-
texts, judgement forms, and judgement forms admitting newly bound variables,
respectively.
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OpenType : ∀ ℓ → Set (suc ℓ)
OpenType ℓ = Ctx → Set ℓ

OpenFam : ∀ ℓ → Set (suc ℓ)
OpenFam ℓ = Ctx → Ty → Set ℓ

ExtOpenFam : ∀ ℓ → Set (suc ℓ)
ExtOpenFam ℓ = Ctx → OpenFam ℓ

To specify the meaning of descriptions, we assume some X : ExtOpenFam,
over which we form one layer of syntax, using the function J Kp that interprets
Premises defined below. The first argument to X is the new variables bound by
this layer of syntax, as exemplified in the first clause of J Kp. The second argument
is the context containing the variables being carried over from the previous layer.
Notice that this is not, in general, the same as the context from the previous
layer, because the usage annotations may have been changed by connectives like
‘∗ and ‘· . The third argument is the type of subterm required.

The remainder of the clauses of J Kp are the interpretation into bunched
combinators. The superscript c on the bunched connectives denotes that they
have been lifted from predicates on usage vectors to predicates on contexts, with
the type component of the context shared throughout. Additive connectives 1̇
and ×̇ are already polymorphic (not relying on anything specific about usage
vectors), so do not need a c variant.

J Kp : Premises → ExtOpenFam ℓ → OpenType ℓ
J ⟨ ∆ ‘⊢ A ⟩ Kp X Γ = X ∆ Γ A
J ‘1̇ Kp X = 1̇; J p ‘×̇ q Kp X = J p Kp X ×̇ J q Kp X
J ‘I∗ Kp X = I∗c; J p ‘∗ q Kp X = J p Kp X ∗c J q Kp X
J r ‘· p Kp X = r ·c J p Kp X

The interpretation of a Rule checks that the rule targets the desired type
and then interprets the rule’s premises ps. Notice that the interpretation of the
premises is independent of the conclusion of the rule, which accounts for the use
of OpenType in J Kp versus OpenFam in J Kr.

J Kr : Rule → ExtOpenFam ℓ → OpenFam ℓ
J ps =⇒ A′ Kr X Γ A = A′ ≡ A × J ps Kp X Γ

The interpretation of a System is to choose a rule label l from L and interpret
the corresponding rule rs l in the same context and for the same conclusion.

J Ks : System → ExtOpenFam ℓ → OpenFam ℓ
J L ▷ rs Ks X Γ A = Σ[ l ∈ L ] J rs l Kr X Γ A

The most obvious way to make such an X is to use some existing OpenFam
on an extended context. We defined Scope to do this: take the new variables ∆,
concatenate them onto the existing context Γ , and pass the extended context
onto the judgement T .
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Scope : ∀ {ℓ} → OpenFam ℓ → ExtOpenFam ℓ
Scope T ∆ Γ A = T (Γ ++c ∆) A

We use Scope to deal with new variables in syntax. Terms resemble the free
monad over a layer-of-syntax functor, though that picture is complicated by
variable binding. A term is either a variable or a use of a logical rule together
with terms for each of the required subterms. The Size argument is a use of
Agda’s sized types to record that subterms are smaller than the surrounding
term for the termination checker.

data [ , ] ⊢ (d : System) : Size → OpenFam 0ℓ where
‘var : ∀[ ⊐− →̇ [ d , ↑ sz ] ⊢ ]
‘con : ∀[ J d Ks (Scope [ d , sz ] ⊢ ) →̇ [ d , ↑ sz ] ⊢ ]

This definition uses →̇, which, analogously to ×̇, is an index-preserving ver-
sion of the function space. We take →̇ to handle n many indices — in this case
two (the context and the type). The notation ∀[ T ] stands for ∀ {x1 . . . xn} →
T x1 . . . xn, where T is a type family with n many indices.

Terms in this data type are difficult to write by hand, due to the need for
proofs that the usage contexts are handled correctly. For example, the following
term is needed to show that, in the {0, 1, ω} (linearity) posemiring of example 1,
!ω forms a comonad. Pattern synonyms ⊸I, !E′, and !I′ stand for applications of
‘con, with the latter two taking explicit usage contexts and proofs. On concrete
posemirings (as in this example), unification is particularly poor at inferring the
usage contexts from the proofs because addition and multiplication are no longer
(judgementally) injective. The function var# is a way of turning a statically
known de Bruijn level and a usage proof into an application of ‘var.

cojoin-!ω : ∀ A → [ λR , ∞ ] []c ⊢ (! ω# A ⊸ ! ω# (! ω# A))
cojoin-!ω A =
⊸I (!E′ ([] ++ [ 1# ]) ([] ++ [ 0# ]) ([]n ++n [ ≤-refl ]n)
(var# 0 (([]n ++n [ ≤-refl ]n) ++n []n))
(!I′ (([] ++ [ 0# ]) ++ [ ω# ])

(([]n ++n [ ≤-refl ]n) ++n [ ≤-refl ]n)
(!I′ ((([] ++ [ 0# ]) ++ [ ω# ]) ++ [])

((([]n ++n [ ≤-refl ]n) ++n [ ≤-refl ]n) ++n []n)
(var# 1
(((([]n ++n [ ≤-refl ]n) ++n [ ω≤1 ]n) ++n []n) ++n []n)))))

Writing terms like this is clearly unsustainable. We will see a way of automat-
ing the necessary proofs via a System-generic elaborator in section 7.2.

4.3 Other syntaxes and syntactic forms

The system µµ̃. We can encode a usage-annotated version of System L/the µµ̃-
calculus [8] — a syntax for classical logic — in such a way that contexts capture
the undistinguished parts of the sequent. As such, the generic substitution lemma
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we get in section 7.1 is the form of substitution required in standard µµ̃-calculus
metatheory. Though the µµ̃-calculus is originally described as a sequent calcu-
lus [8], we use the techniques of Herbelin [12, p. 12] and Lovas and Crary [14]
to present it as a natural deduction system, thus giving a notion of variable to
the system.

Unlike the single judgement form of λR and standard simply typed λ-calculi,
the µµ̃-calculus has three judgement forms: terms, coterms, and commands.
Read logically, terms and coterms are seen to, respectively, prove and refute
propositions (types), while commands exhibit contradictions. This means that
the abstract Ty in the generic framework is instantiated to Conc (for conclusion)
as below, with Ty not being exposed directly to the generic framework. For now,
we just consider multiplicative disjunction ` (par) and negation/duality, beside
an uninterpreted base type. These are enough to exhibit classical behaviour.

data Ty : Set where
base : Ty
` : (rA sB : Ann × Ty) → Ty
ˆ⊥ : (A : Ty) → Ty

data Conc : Set where
com : Conc
trm cot : (A : Ty) → Conc

With Ty instantiated as Conc, all terms are assigned Conc type, as are all the
variables. No variables are given com type, similar to how in the bidirectional
typing syntax of Allais et al. [3, p. 25], no variables are given Check type. How
to observe this invariant is covered in the latter paper, so we will not repeat it
here (having not yet seen how to write traversals on terms).

The syntax comprises a cut between a term and a coterm of the same type,
the eponymous µ and µ̃ constructs for proof by contradiction, and then term
and coterm (introduction and elimination) forms for negation and par.

data ‘MMT : Set where
‘cut ‘µ ‘µ∼ : (A : Ty) → ‘MMT
‘λ ‘λ∼ : (A : Ty) → ‘MMT
‘⟨-,-⟩ ‘µ⟨-,-⟩ : (rA sB : Ann × Ty) → ‘MMT

MMT : System
MMT = ‘MMT ▷ λ where
(‘cut A) → ⟨ []c ‘⊢ trm A ⟩ ‘∗ ⟨ []c ‘⊢ cot A ⟩ =⇒ com
(‘µ A) → ⟨ [ 1# , cot A ]c ‘⊢ com ⟩ =⇒ trm A
(‘µ∼ A) → ⟨ [ 1# , trm A ]c ‘⊢ com ⟩ =⇒ cot A
(‘λ A) → ⟨ []c ‘⊢ cot A ⟩ =⇒ trm (A ˆ⊥)
(‘λ∼ A) → ⟨ []c ‘⊢ trm A ⟩ =⇒ cot (A ˆ⊥)
(‘⟨-,-⟩ rA@(r , A) sB@(s , B)) →
r ‘· ⟨ []c ‘⊢ cot A ⟩ ‘∗ s ‘· ⟨ []c ‘⊢ cot B ⟩ =⇒ cot (rA ` sB)

(‘µ⟨-,-⟩ rA@(r , A) sB@(s , B)) →
⟨ [ r , cot A ]c ++c [ s , cot B ]c ‘⊢ com ⟩ =⇒ trm (rA ` sB)
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Duplicability There is one more bunched combinator we have experimented with
adding to the framework:

(□T )R := ΣR′. (R′ ≤ R)× (R′ ≤ 0)× (R′ ≤ R′ +R′)× T R′

The idea of (□T )R is to assert that R, or some refinement of it, can be both
discarded and duplicated indefinitely, and in the refinement we have a T . We
use this combinator to introduce subterms that are used an unknown number
of times, for example the continuations of the eliminator of an inductive type,
or other fixed points. We can also use it in linear/non-linear style systems [6] to
make sure linear variables are not available in the intuitionistic fragment.

Adding the □ combinator is the only thing we have found that requires our
linear maps be functional rather than merely relational.

5 Environments

We have now seen how to build data types of intrinsically well typed and well
usaged terms for a given System. In the next section, we will define a generic
traversal function that assigns a “semantics” to each term. Traversals operate
on open terms, so they need a way to assign semantics to variables in a typed
and usage respecting manner. This is the function fulfilled by environments.

Given a semantic notion of variable V : OpenFam, we use the notation Γ
V

A
meaning V Γ A for the type of inhabitants of V in the context Γ at type A. In

the non-substructural systems of Allais et al. [3], a V-environment Γ
V

=⇒ ∆ is

nothing more than a function ∀A → ∆ ⊐− A → Γ
V

A, mapping variables to
V-things. In our usage annotated setting though, we must correctly distribute
resources tracked by the annotations; making sure that we have enough resources
in Γ to cover all the demands in ∆. Following our previous work [21], this
accounting is expressed via the presence of a linear transformation:

Definition 4 (Environment). A V-environment between annotated contexts
Γ and ∆ (decomposed as Pγ and Qδ, respectively, when convenient) is a linear
map Ψ : R|∆| → R|Γ | (written postfix) such that P ≤ QΨ and for each A, P ′,

and Q′ such that P ′ ≤ Q′Ψ , a “lookup” function from Q′δ ⊐− A to P ′γ
V

A.

In Agda code, we use [ V ] Γ ⊨ A instead of Γ
V

A and [ V ] Γ ⇒e ∆ instead

of Γ
V

=⇒ ∆.
The specification of the lookup function has some redundancy. Notice that,

for Q′∆ ⊐− A to hold, we must have Q′ ≤ ⟨i| for some i. Instead of P ′ ≤
Q′Ψ , asking for P ′ ≤ ⟨i|Ψ would be just as general. Additionally, all of the
Vs we consider satisfy the subusaging property (that P ′ ≤ P yields a coercion

PΓ
V

A → P ′Γ
V

A), in which case we could just ask for an inhabitant

of (⟨i|Ψ)γ V
A. However, we find the stated definition technically expedient

because, by this point, basis vectors and raw indices (instead of usage-checked
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variables) are below our level of abstraction. We prefer to work with linear
relatedness and ⊐−-variables.

By instantiating V in definition 4, we obtain resource-correct versions of
familiar notions: letting V be ⊐− yields resource-correct renamings; and letting V
be ⊢ (i.e., terms) yields resource-correct substitutions.

We may informally assign variable names to the entries in the domain context.

Example 3. Assume R is the natural numbers with ordering given by = and the
usual addition and multiplication. There is a ⊐−-environment (a renaming)

(6a : A, 0b : B, 1c : C, 0d : D)
⊐−
=⇒ (1C, 2A, 4A).

The mapping of variables to variables and matrix giving the linear map Ψ are:

0a : A, 0b : B, 1c : C, 0 : D ⊐− c : C
1a : A, 0b : B, 0c : C, 0 : D ⊐− a : A
1a : A, 0b : B, 0c : C, 0 : D ⊐− a : A

0 0 1 0
1 0 0 0
1 0 0 0


Note that (6 0 1 0) = (1 2 4)Ψ . The first column of Ψ , corresponding to variable
6a : A, contains two 1s because it has been duplicated (via contraction). The
second and fourth columns are all 0 because variables b and d have been discarded
(via weakening). The third column contains one 1 because c is used once. This
1 appears above the 1s to its left because c has been permuted (via exchange)
past a. Each of the rows in the matrix is a basis vector because variables can
only be formed in contexts with basis-compatible annotations.

Relocation An environment ρ : Pγ
V

=⇒ Qδ does not determine P and Q, we can
replace them with any P ′ and Q′ that are related by the linear map ρ.Ψ (that
is, the linear map of environment ρ):

Lemma 1 (relocate). Given an environment ρ : Pγ
V

=⇒ Qδ and a P ′ and a

Q′ such that P ′ ≤ Q′(ρ.Ψ), there is also an environment of type P ′γ
V

=⇒ Q′δ
with the same linear map and action on variables.

Relocation will be used when pushing environments into subterms in section 6.3.

Inductive Construction When V supports subusaging, we can construct a V-
environment by cases on the shape of the target context by the following rules,
which use the bunched connectives from section 3:

I∗

⟨⟩ : V
=⇒ ·

ρ :
V

=⇒ ∆l ∗ σ :
V

=⇒ ∆r

⟨ρ, σ⟩ : V
=⇒ ∆l, ∆r

r ·
(
M :

V
A
)

⟨M⟩ : V
=⇒ rA

Left to right, we can create an environment into the empty context when all
usage annotations on the source context are 0; we can create an environment
into a concatenated context when we can additively split up the annotations of
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the source context and produce environments into both halves from the split
sources; and we can create an environment into a singleton context rA when we
can divide the source context by r and produce a V-value in the divided context
of the appropriate type.

Example 4. Assume R is the natural numbers with ordering given by = and the
usual addition and multiplication, and ⊢ is the type of terms for a System with
function application. There is an environment (substitution)

⟨⟨z⟩, ⟨y z⟩⟩ : (0x : A, 2y : B ⊸ C, 3z : B)
⊢

=⇒ (1B, 2C).

We rely on the observations that
(
0 2 3

)
=

(
0 0 1

)
+

(
0 2 2

)
and, on the right,

that
(
0 2 2

)
= 2

(
0 1 1

)
. Then, we have 0x : A, 0y : B ⊸ C, 1z : B ⊢ z : B and

0x : A, 1y : B ⊸ C, 1z : B ⊢ y z : C.

We could have used these rules to inductively define what environments are.
However, we found that this was difficult to work with. It is often easier to do
linear algebraic proofs separately from the rest of an environment. For example,
for identity and composition of environments (below), definition 4 is easier to use
because we can rely on the identity and composition of linear maps. Concretely,
an inductive proof of identity would, for example, involve constructing an en-

vironment of type Pγ,Qδ
V

=⇒ Pγ,Qδ by constructing environments of types

Pγ, 0δ
V

=⇒ Pγ and 0γ,Qδ
V

=⇒ Qδ. These are not identity environments, so we
would have to strengthen the induction hypothesis.

Renameability Renamings, i.e.⊐−-environments, are a particularly important case
of environments. Renamings form a category, with identity and composition
following from the identity and composition of linear maps. As in the work of
Fiore et al. [9], presheaves over renamings are an important class of open families.

In Agda code, we abbreviate
⊐−
=⇒ (which would usually be [ ⊐− ] ⇒e ) as ⇒r .

In a setting where new variables can be bound in the middle of a derivation, it
is important that the values we carry around while traversing a term can handle
the existence of variables that appear but they do not use. We call any such
notion of value renameable. The cofree renameable open type on an open type
T is □r T (unrelated to the □ combinator mentioned at the end of section 4.3),
with T then being renameable if it forms a □r-coalgebra.

Definition 5. For T an open type, (□r T )Γ := ∀
[ (

(−)
⊐−
=⇒ Γ

)
→̇ T

]
. That

is, □r T holds at Γ when T holds not only at Γ , but also at any other Γ+ which
renames to Γ .

Definition 6. We say that T is renameable whenever there is a function renT :
∀[ T →̇ □r T ]. That is, whenever T holds at Γ , it also holds at any Γ+ which
renames to Γ .
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A renameable notion of value gives rise to a renameable notion of environ-
ment, essentially by renaming each contained value in an appropriate way. On
the other side, environments admit renamings of their codomains in the opposite
direction to that given by renameability.

Lemma 2 (renˆEnv). If (−)
V

A is renameable for all A, then so is (−)
V

=⇒ ∆
for all ∆.

Lemma 3. From Γ
V

=⇒ ∆ and ∆
⊐−
=⇒ Θ, we get Γ

V
=⇒ Θ.

Proof sketch. Notice that the lookup component of an environment maps vari-
ables in the codomain to values in the domain. We can apply the renaming to
these variables.

6 Semantics

Given a V-environment Γ ⇒ ∆, the function semantics we define in this section
assigns a C-value in context Γ to every term in context∆, where C is an OpenFam
being the carrier of the semantic interpretation of terms (V being the semantic
interpretation of variables). Before we can define semantics, we need to treat
recursion through rules’ premises (section 6.1) and extension of environments
when going under variable binders (section 6.2).

6.1 A layer of syntax is functorial

A basic property of the universe of syntaxes we described in section 4 is that every
syntax supports a functorial action on subterms, realised by the function map-s.
Its type says that to map a function f over a layer of syntax, there must be a
linear map F relating the domain and codomain usage contexts, and f should be
usable wherever the domain and codomain usage contexts are similarly related
by F .

map-s : (s : System) →
(∀ {Θ P′ Q′} → F .rel P′ Q′ → ∀[ X Θ (ctx P′ γ) →̇ Y Θ (ctx Q′ δ) ]) →
(∀ {P Q} → F .rel P Q → ∀[ J s Ks X (ctx P γ) →̇ J s Ks Y (ctx Q δ) ])

This generality is needed because usage contexts change between a term
and its immediate subterms—they are decomposed according to the bunched
connectives used in the rules. X and Y are ExtOpenFams, with Θ being the
context extension for a subterm (i.e., the variables newly bound in that subterm).
Unlike usage annotations, types in the contexts γ and δ, and the conclusion
types implicit here, are preserved throughout. This is the essence of the usage
annotation based approach—we use traditional techniques for variable binding,
with the usage annotations layered on top.

The heart ofmap-s ismap-p, which recursively works through the structure ps
of premises of the rule applied, acting on each subterm it finds. Here, particularly
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in the clauses for ‘∗ and ‘·, we see why it is not enough for the function on
subterms to apply at usage contexts P and Q — rather, it also needs to apply at
any similarly related P′ and Q′. In the case of ‘∗, we have that P ≤ PM + PN ,
with M and N being collections of subterms in usage contexts PM and PN ,
respectively. Linearity of F yields QM and QN such that Q ≤ QM + QN and
we use map-p recursively at (PM ,QM ) and (PN ,QN ) on M and N . The cases
for ‘· and ‘I∗ are similar, each using a different aspect of linearity. In contrast,
the cases for ‘1̇ and ‘×̇, which are the only constructors used in fully structural
systems, do not involve any changes in the usage contexts.

map-p : (ps : Premises) →
(∀ {Θ P′ Q′} → F .rel P′ Q′ → ∀[ X Θ (ctx P′ γ) →̇ Y Θ (ctx Q′ δ) ]) →
(∀ {P Q} → F .rel P Q → J ps Kp X (ctx P γ) → J ps Kp Y (ctx Q δ))

map-p ⟨ Γ ‘⊢ A ⟩ f r M = f r M
map-p ‘1̇ f r =
map-p (ps ‘×̇ qs) f r (M , N ) = map-p ps f r M , map-p qs f r N
map-p ‘I∗ f r I∗⟨ sp0 ⟩ = I∗⟨ F .rel-0m (sp0 , r) ⟩
map-p (ps ‘∗ qs) f r (M ∗⟨ sp+ ⟩ N ) =
let rM ↘, sp+′ ,↙ rN = F .rel-+m (sp+ , r) in
map-p ps f rM M ∗⟨ sp+′ ⟩ map-p qs f rN N

map-p (p ‘· ps) f r (⟨ sp* ⟩· M ) =
let r′ , sp*′ = F .rel-*m (sp* , r) in
⟨ sp*′ ⟩· map-p ps f r′ M

6.2 The Kripke function space

At this point we introduce a minor generalisation to OpenFam and ExtOpenFam:
I —OpenFam and I —ExtOpenFam. We obtain the definition of I —OpenFam
by replacing the textual occurrence of Ty by the parameter I .

The definition KripkeV C∆ is a kind of function space that describes a C
value parametrised by ∆-many additional Vs (all correctly typed and usage
annotated). It is used to describe how to go under binders in a Higher-Order
Abstract Syntax style—to go under a binder we must provide semantic interpre-
tations for all the additional variables:

Kripke : (V : OpenFam v) (C : I —OpenFam c) → I —ExtOpenFam
Kripke = Wrap λ V C ∆ Γ A → □r ([ V ] ⇒e ∆ −∗c [ C ] ⊨ A) Γ

Wrap is a device that turns any type family into an equivalent type family that
is judgementally injective in its indices, which helps with Agda’s type inference.
It turns the type family into a parametrised record with a single field get whose
type is the type in the body of the λ-abstraction. For understanding the meaning
of Kripke, Wrap can be ignored.

If ∆ is of the form s1B1, . . . , snBn, then Kripke V C ∆ Γ A is equivalent to
□r (s1 ·c [ V ] ⊨ B1 −∗c · · · −∗c sn ·c [ V ] ⊨ Bn −∗c [ C ] ⊨ A) Γ by Currying. That
is to say, the Kripke function is expecting a value for each newly bound variable,
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at the multiplicity of its annotation, together with the resources supporting
each of those values. We use the “magic wand” function space here to enforce
the invariant that the freshly bound variables have usage annotations that are
added to the existing variables, not shared with them. The use of the□r modality
ensures that we can still use it in the presence of additional variables introduced
by weakening.

Kripke is functorial in the C argument, as witnessed by the mapKC function,
which is essentially post-composition:

mapKC : ∀ {A B} → ∀[ [ C ] ⊨ A →̇ [ C′ ] ⊨ B ] →
∀ {∆ Γ} → Kripke V C ∆ Γ A → Kripke V C′ ∆ Γ B

mapKC f b .get ren .app∗ sp ρ = f (b .get ren .app∗ sp ρ)

6.3 Semantic traversal

We can now state the data required to implement a traversal assigning semantics
to terms. For open families V and C, interpreting variables and terms respectively,
we assume that V is renameable, that V is embeddable in C, and that we have
an algebra for a layer of syntax, where bound variables are handled using the
Kripke function space:

record Semantics (d : System) (V : OpenFam v) (C : OpenFam c)
: Set (suc 0ℓ ⊔ v ⊔ c) where

field
renˆV : ∀ {A} → Renameable ([ V ] ⊨ A)
JvarK : ∀[ V →̇ C ]
JconK : ∀[ J d Ks (Kripke V C) →̇ C ]

We mutually define the action semantics and its lemma body. The purpose of
semantics is to turn a term into a C-value using a V-environment and the fields
of Semantics. Meanwhile, body does a similar job, but also deals with newly
bound variables. In particular, body takes a term in a context extended by Θ,
and produces a Kripke function from V-values for Θ to C-values.

semantics : ∀ {Γ ∆} → [ V ] Γ ⇒e ∆ → ∀ {sz} →
∀[ [ d , sz ] ∆ ⊢ →̇ [ C ] Γ ⊨ ]

body : ∀ {Γ ∆} → [ V ] Γ ⇒e ∆ → ∀ {sz Θ} →
∀[ Scope [ d , sz ] ⊢ Θ ∆ →̇ Kripke V C Θ Γ ]

To implement the new recursor semantics, we use the standard recursor, which
in one case gives us a variable v , and in the other gives us a structure of subterms
M , each of which is in an extended context. To deal with a variable v , we look
it up in the environment ρ, then use the JvarK field to map the resulting V-value
to a C-value. To deal with a structure of subterms M , we use the functoriality
of the syntactic structure to consider each subterm separately. On a subterm,
we apply body, which amounts to a recursive call to semantics with an extended
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environment. Recall that relocate (lemma 1) adjusts the environment ρ to work
in the usage contexts of the subterms.

semantics ρ (‘var v) = JvarK $ ρ .lookup (ρ .fit-here) v
semantics ρ (‘con M ) = JconK $
map-s (ρ .Ψ) d (λ r → body (relocate ρ r)) (ρ .fit-here) M

For body, we are given a subterm M , to which we want to apply semantics. To
do so, we need an extended version of the initial environment ρ. We express this
as the generation of a Kripke function that produces the extended environment
given interpretations of the fresh variables. We take ρ, which is an environment
covering ∆, and σ, which is an environment covering Θ, and glue them together
using the inductive rules for generating environments, after having renamed ρ
via lemma 2 to make it fit the new context Γ+ (intended to be Γ ++c Θ):

extend : ∀ {Γ ∆ Θ} →
[ V ] Γ ⇒e ∆ → Kripke V ([ V ] ⇒e ) Θ Γ (∆ ++c Θ)

extend ρ .get ren .app∗ sp σ = ++e (renˆEnv renˆV ρ ren ∗⟨ sp ⟩ σ)

To define body, we use mapKC to post-compose the environment extension
by the λ-function taking an extended environment and acting with it on M .

body ρ M = mapKC (λ σ → semantics σ M ) (extend ρ)

7 Example traversals

In this section, we provide three example uses of semantic traversals: generic
renaming and substitution, a usage elaborator, and a denotational semantics.
The reader is also encouraged to see the far greater range of examples in the
work of Allais et al. [3], which should adapt to our usage-annotated setting.
Renaming and substitution are essential results, while the latter two examples
focus on usage annotations.

A result we will use throughout this section is reification. When we have an
index-preserving mapping from usage-checked variables to V-environments, we

can construct environments of the form Γ
V

=⇒ Γ (identity environments) for
all Γ . This lets us write the reify function, which simplifies our obligations in
giving a Semantics by coercing Kripke functions into just C-values in an extended
context.

Lemma 4 (reify). If V is an open family such that there is a function v :
∀[ ⊐− →̇ V ], we get a function of type ∀[ KripkeV C →̇ Scope C ] for any C.

Proof. Let b : KripkeV C∆Γ A. That is, b is a Kripke function yielding C-
computations We want to apply b so as to get a C (Γ,∆)A. Let Pγ = Γ and
Qδ = ∆. The □r in the type of b allows us to reverse-rename Γ to Γ, 0δ. Then we
give the −∗-function an argument in context 0γ,∆, noting that (Γ, 0δ)+(0γ,∆) =
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(Γ,∆), as we wanted from the result. The argument needs type 0γ,∆
V

=⇒ ∆.

We produce this via lemma 3 from an environment ρ : 0γ,∆
V

=⇒ 0γ,∆ created
using v and a renaming which is the complement to that used on □r.

All of the Vs used in examples in this paper support identity environments.
However, Allais et al. [3, p. 27] give some important examples that do not sup-
port identity environments, and thus cannot use reify (lemma 4). The feature
that causes the lack of support for identity environments is that a semantics can
make use of the fact that only variables of particular kinds are bound by the
syntax. In the examples of Allais et al., a bidirectionally typed language only
binds variables that synthesise their type, as opposed to those whose type is
checked. The semantics of type-checking and elaboration rely on variables syn-
thesising their type, so V is chosen to cover only those variables. Instead of using
reify, we must observe that each syntactic form only binds such synthesising vari-
ables. Similar phenomena would appear in, say, a call-by-value language where
variables are values (not computations), or a polarised language where variables
always have a polarity matching their type.

7.1 Renaming and substitution

In an unpublished note, McBride [15] gives a parametrised traversal yielding
homomorphisms of syntax, the canonical examples of which are simultaneous
renaming and simultaneous substitution. The parameters are collected in the
record Kit. We make a minor change to the original presentation, where instead
of our renˆV field, McBride has the field wk allowing only context extensions. As
for the other two fields, vr allows us to map variables to V-values, so as to put
newly bound variables in environments; and tm allows us to extract terms from
V-values, as required when we use the environment to handle a free variable.

record Kit (d : System) (V : OpenFam v) : Set (suc 0ℓ ⊔ v) where
field
renˆV : ∀ {A} → Renameable ([ V ] ⊨ A)
vr : ∀[ ⊐− →̇ V ]
tm : ∀[ V →̇ [ d , ∞ ] ⊢ ]

Where McBride gave the traversal explicitly, we go via our generic semantic
traversal. The first two fields of Semantics derive directly from fields of Kit.
Meanwhile, to handle term constructors, we first reify to get a collection of
traversed subterms, and then use ‘con to assemble these subterms into a similarly
shaped syntactic form as we started with. The vr field is used implicitly in reify,
as it is used to show that V-identity environments exist.

kit→sem : Kit d V → Semantics d V [ d , ∞ ] ⊢
kit→sem K .renˆV = K .renˆV
kit→sem K .JvarK = K .tm
kit→sem {d = d} K .JconK = ‘con ◦ map-s′ d reify
where open Kit K using (identityEnv)
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The action of a syntactic traversal on logical rules is basically fixed: we pre-
serve the logical rule and extend the environment with any newly bound variables
according to vr. Meanwhile, the action on variables is relatively unconstrained:
we look up the variable in the environment to get a V-value, then transform that
V-value into a term using tm.

The idea of simultaneous renaming is that variables replace variables, whereas
with simultaneous substitution, terms replace variables. This translates to en-
vironments for renaming containing ⊐−-values (variables), and environments for
substitution containing ⊢-values (terms).

Ren-Kit : Kit d ⊐−
Ren-Kit = record { renˆV = renˆ⊐− ; vr = id ; tm = ‘var }

Notice that renˆ⊢, witnessing the fact that terms are renameable, is a corol-
lary of Ren-Kit.

Sub-Kit : Kit d [ d , ∞ ] ⊢
Sub-Kit = record { renˆV = renˆ⊢ ; vr = ‘var ; tm = id }

7.2 A usage elaborator

Using the constructs we have seen so far, producing example terms soon becomes
extremely tedious. We can achieve some abbreviation by using pattern synonyms
to wrap around ‘con expressions, but we still have to produce essentially bespoke
proofs whenever we use a usage-sensitive part of the syntax. The size of each
of these proofs is roughly proportional to the number of free variables, so the
amount of proof we have to write grows roughly quadratically with the size of
terms. An additional factor, which we can’t see on paper, is that type checking
time for these proofs soon becomes prohibitive to interactive development.

Our aim in this subsection is to automate usage constraint proofs, making
terms both easier to write and more performant to check. We invoke the automa-
tion by writing terms in a syntax where usage constraints have been trivialised,
and then use a semantic traversal over the simplified syntax to try to produce a
fully elaborated term in the original syntax. We write the automation in a way
that is generic in the syntax description, thus avoiding repetition and facilitating
the prototyping of new type systems.

The type of syntax descriptions depends on the type of usage annotations
because of variable binding. For example, in the !r-E rule of figure 2, the right
premise binds a new variable with annotation r, where r is drawn from the
ambient posemiring. The scaling combinator also makes direct reference to the
posemiring. To produce a simplified syntax description, where usage constraints
are trivialised, we set the ambient posemiring to the 1-element 0 posemiring. In
contrast to syntax descriptions, even though types can contain usage annota-
tions, the type of types does not depend on the type of usage annotations. This
means that, in our simplified syntax, terms have types from the original system
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even though variables have trivial usage annotations. We define the 0 posemir-
ing as follows, being careful to use the 0-field record type ⊤ so that everything
algebraic gets solved by Agda’s η-laws. Indeed, in this very definition, all of the
semiring operations and laws are canonically inferred.

0-poSemiring : PoSemiring 0ℓ 0ℓ 0ℓ
0-poSemiring = record
{ Carrier = ⊤; ≈ = λ → ⊤; ≤ = λ → ⊤ }

The elaboration process is monadic. In particular, we use the List/non-
determinism monad to give all of the possible annotation choices on the free
variables of a term. We believe the commitment to multiple solutions is inherent
when the syntax contains ‘1̇. For example, in the intermediate stages of elabo-
rating (⊢ λx. (∗, ∗)) : A ⊸ ⊤ ⊗ ⊤ with a usage counting posemiring (assuming
reasonable rules for ⊤ and ⊗), it is unclear whether to use the variable x in the
left ∗ or the right ∗. This uncertainty should be reflected in the final result.

The non-deterministic choices we make during elaboration are enumerated
by the fields of NonDetInverses. These choices are driven by the typing rules
and a candidate usage vector for the conclusion. For example, +−1 r is needed
when we encounter a ‘∗ in the syntax and the candidate usage annotation we are
considering is r . Then, +−1 r is a list of pairs of annotations p and q that r can
split into, together with a proof of the splitting. For 0#−1 and 1#−1, inverses to
constants, we are given the candidate r and typically return an empty list if the
constraint cannot be satisfied, or a singleton list containing a proof. *−1 is used
when we encounter scaling, in which case we know both the scaling factor r (from
the syntax description) and the candidate q . These inverse operations combine
monadically (in fact, applicatively) to give inverses to the vector operations of
zero, addition, scaling, and basis.

record NonDetInverses : Set where
field
0#−¹ : (r : Ann) → List (r ≤ 0#)
+−¹ : (r : Ann) → List (∃ \ (( p , q) : × ) → r ≤ p + q)
1#−¹ : (r : Ann) → List (r ≤ 1#)
*−¹ : (r q : Ann) → List (∃ \ p → q ≤ r * p)

We choose the V of our semantics to be (unannotated) variables. For the C,
we consider functions from candidate usage vectors R to the list of elaborated
derivations with usage annotations given by R. The protocol this encodes is
that the user will provide an unannotated term together with a candidate usage
context R, and usage elaboration returns a list of possible ways the term could
be annotated such that the conclusion has usage context R. The module name U
refers to the fact that we are taking the ambient posemiring to be 0 in OpenFam.
The effect on OpenFam is that the usage annotations of any contexts we consider
are uninformative (hence the on the left).

C : System → U.OpenFam
C sys (U.ctx γ) A = ∀ R → List ([ sys , ∞ ] ctx R γ ⊢ A)
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To traverse the unannotated terms, we produce a Semantics over the unanno-
tated system uSystem sys. To write it, we make use of idiom brackets L . . . M, which
have the effect of replacing top-level spines of applications by (List-)applicative
applications. Field by field, we already know that variables are renameable. To
interpret a variable, we consider all the possible proofs that such a variable could
be well annotated, and package them up as a variable term via the applicative
machinery. Finally, for compound terms, we first reify the unannotated subterms,
and then combine the subterms via a lemma.

elab-sem : ∀ sys → U.Semantics (uSystem sys) U. ⊐− (C sys)
elab-sem sys .renˆV = U.renˆ⊐−
elab-sem sys .JvarK (U.lvar i q ) R =

L ‘var L (lvar i q) (⟨ i |−¹ R) M M
elab-sem sys .JconK b R =
let rb = U.map-s′ (uSystem sys) U.reify b in
L ‘con (lemma sys rb) M

The lemma essentially goes through the shape of the premises, combining
the collections of subterms in the natural way. For example, at each ×̇ , we
take the Cartesian product of the possibilities of each half, and at each ∗ ,
we non-deterministically split the usage annotations coming in, and then take
the Cartesian product. When it comes to newly bound variables, the syntax
description tells us their annotations, so there is no further non-determinism
introduced here.

lemma : ∀ (sys : System) {A Γ} →
U.J uSystem sys Ks (U.Scope (C sys)) (uCtx Γ ) A →
List (J sys Ks (Scope [ sys , ∞ ] ⊢ ) Γ A)

To actually use elab-sem on terms, we take the associated semantics and pass
it the identity environment (an identity renaming in this case, because V is
a family of variables). We use elab-unique, which further checks statically that
exactly one derivation is returned. The candidate usage vector R will be [] for
closed terms, and otherwise we have to supply the intended usage annotations.

We can now use the elaborator to automatically infer the usage annotations
for the example at the end of section 4.2. This allows us to write:

cojoin-!ω : ∀ {A} → [ λR , ∞ ] []c ⊢ (! ω# A ⊸ ! ω# (! ω# A))
cojoin-!ω = elab-unique (⊸I (!E (var# 0) (!I (!I (var# 1))))) []

We have instantiated the usage elaborator so that: 0#−1 is a singleton on 0 and
ω, and empty on 1; 1#−1 is a singleton on 1 and ω, and empty on 0; +−1 gives
0 7→ [(0, 0)], 1 7→ [(0, 1), (1, 0)], and ω 7→ [(ω, ω)]; and *−1 gives (ω, 0) 7→ [0],
(ω, 1) 7→ [], and (ω, ω) 7→ [ω] (omitting (0, ) and (1, ) cases for brevity). Note
that we do not consider splitting ω up as, say, 1+ω, because this splitting would
introduce more non-determinism but not allow any more terms to be typed. As
such, the only non-determinism comes when we have variables annotated 1 and
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need to do an additive split, like when we apply the !E rule below. At this point,
the variable can become either 0-annotated in the left subterm and 1-annotated
on the right, or vice-versa. We will find that, because the left subterm wants
to use that variable, the former choice will be rejected. The function var# is
a convenience for converting statically known natural numbers, representing de
Bruijn levels, into variable terms.

7.3 A denotational semantics

To justify the name semantics, we give an example traversal that is a denota-
tional semantics in the usual sense. The semantics we take is a refinement of
that of Abel and Bernardy [2], which gives a way to extract parametricity theo-
rems from substructurally typed programs. Example theorems are that all linear
terms act as permutations on some fixed set of resources, and all monotonically
typed terms are really monotonic in the way the typing suggests they are.

To abbreviate this section, we use a simplified syntax compared to λR. We
allow for an arbitrary family of base types BaseTy , and a single type former
(r , A) ⊸ B , equivalent to (! r A) ⊸ B from the earlier system.

data Ty : Set where
base : BaseTy → Ty
⊸ : (rA : Ann × Ty) (B : Ty) → Ty

In the term syntax, λ-abstraction now binds a variable with annotation r ,
while application needs to scale its argument by r (both in accordance with the
function type they are acting on).

data ‘AnnArr : Set where
‘lam ‘app : (rA : Ann × Ty) (B : Ty) → ‘AnnArr

AnnArr : System
AnnArr = ‘AnnArr ▷ λ where
(‘lam rA B) → ⟨ [ rA ]c ‘⊢ B ⟩ =⇒ rA ⊸ B
(‘app rA@(r , A) B) → ⟨ []c ‘⊢ rA ⊸ B ⟩ ‘∗ r ‘· ⟨ []c ‘⊢ A ⟩ =⇒ B

As a running example, we take the usage annotations to be the 4-element
variance posemiring (example 2). We establish the property that all terms are
monotonic in their free variables. This monotonicity can be covariant or con-
travariant (or neither or both) depending on the annotation of each free variable.
This provides an additional example to those of Abel and Bernardy.

We will take semantics of this system into world-indexed relations [2, 5]. A
world-indexed relation (WRel) over a poset of worlds W is a set over which we
have aW -indexed binary relation satisfying a presheaf-like property with respect
to the order on W . The Agda code for world-indexed relations and constructions
on them can be found in Wood and Atkey [22].

Example 5. When W is the 1-element set, a world-indexed relation is just a set
equipped with a binary relation.
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Morphisms (WRelMor) between world-indexed relations R and S consist of
a mapping between the underlying sets such that, at each fixed world w , the
mapping preserves relatedness from R to S .

When the poset of worlds forms a (relational) commutative monoid, such
world-indexed relations support a symmetric monoidal closed structure, with
objects denoted IR, ⊗R , and ⊸R ,. These reuse the bunched connectives I∗,
∗, and −∗, now over worlds rather than contexts.

The final piece of semantics we need is a bang operator. We allow the semantic
bang to be an arbitrary annotation-indexed functor on world-indexed relations.
This functor must respect all of the structure on the indices, making it a graded
comonad over multiplication, as well as being lax monoidal at any particular
index r . These laws are listed in the Generic.Linear.Example.WRel module in
[22].

Example 6. With W being the 1-element set and annotations coming from the
variance semiring, we can define the following bang. It is always the identity
on the set component, while the relation component consists of flipping the
relation for contravariance and taking conjunctions to achieve both covariance
and contravariance. When we want neither covariance nor contravariance, we
use the always true predicate on worlds 1̇.

!R : WayUp → WRel ≤w → WRel ≤w

!R a R .set = R .set

!R ↑↑ R .rel = R .rel

!R ↓↓ R .rel x y = R .rel y x

!R ?? R .rel x y = 1̇

!R ˜˜ R .rel x y = R .rel x y ×̇ R .rel y x

!R a R .subres = id

The semantics of a type is given by J K, which maps into world-indexed
relations. The function type is interpreted using ⊸R and !R. Contexts are in-
terpreted by J Kc, using ⊗R and IR. Terms are interpreted as morphisms by the
open family J ⊢ K. Variables are interpreted by lookupR (definition omitted).

lookupR : ∀ {Γ A} → Γ ⊐− A → J Γ ⊢ A K

Now we give a Semantics. The choice of V as ⊐− is somewhat arbitrary, given
that a standard denotational semantics would not use intermediate environments
in the same sense as renaming and substitution, but it allows us to reuse the
standard facts that variables support renaming and identity environments. With
this choice of V and C, we interpret environment entries by lookupR. Meanwhile,
for the logical rules, we ignore environments by using reify to just deal with
morphisms in an extended context. As such, λ-abstractions are easy to interpret,
while applications require some massaging to remove the extension by an empty
context, followed by some plumbing to split the interpretation of the context
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according to the usage constraints and feed the interpretation of the argument
n′ into the interpretation of the function m′.

Wrel : Semantics AnnArr ⊐− J ⊢ K
Wrel .renˆV = renˆ⊐−
Wrel .JvarK = lookupR

Wrel .JconK (‘lam (r , A) B , ≡.refl , m) = curryR (reify m)
Wrel .JconK {ctx R γ}
(‘app (r , A) B , ≡.refl , ∗⟨ ⟩ {P} {rQ} m sp+ (⟨ ⟩· {Q} sp* n)) =
let n′ : WRelMor J ctx Q γ Kc J A K

n′ = reify n ◦R ⊗R-unitr←
m′ : WRelMor (J ctx P γ Kc ⊗R !R r J A K) J B K
m′ = uncurryR (reify m ◦R ⊗R-unitr←) in

m′ ◦R map-⊗R idR (!R-map n′ ◦R ctx-* sp* ) ◦R ctx-+ sp+

Then, the semantics of terms is given by the function semantics Wrel 1r,
where 1r is the identity renaming.

Example 7. We can make a subtraction function from primitive addition and
negation on integers. Subtraction is covariant in its first argument and con-
travariant in its second argument. We give the definition in pseudocode, though
it is also amenable to the usage elaborator of section 7.2, suitably instantiated.

∼∼p : ↑↑Z ⊸ ↑↑Z ⊸ Z,∼∼n : ↓↓Z ⊸ Z ⊢ minus : ↑↑Z ⊸ ↓↓Z ⊸ Z
minus := λx. λy. p x (n y)

After feeding in Agda’s addition and negation functions as the interpretations
of the free variables (noting that they are both monotonic in the required way),
we get the following free theorem.

thm : x Z.≤ x′ → y′ Z.≤ y → x Z.+ (Z.- y) Z.≤ x′ Z.+ (Z.- y′)

8 Conclusions

We have presented a framework for doing metatheory for a class of substructural
type systems in Agda. The framework gives us renaming, substitution, and a
usage elaborator for new syntaxes for free, which we hope can facilitate proto-
typing and the mechanisation of more interesting semantic results. Beside the
mechanised framework itself, we believe its methodology — the use of bunched
premise combinators — can guide and simplify the development of (potentially
unmechanised) substructural type systems.

Our account of substructurality is based on the linear algebraic principles
described by Wood and Atkey [21]. However, these details only really affect the
definition of environment, in which the use of linear maps is motivated by them
being the standard notion of morphism between vectors. We could imagine that
a similar notion of morphism is found for the kind of annotations found in Licata
et al. [13], allowing a framework to consider finer substructural systems.
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