
A Framework for Semiring-Annotated Type Systems

PhD Thesis

James Wood

Mathematically Structured Programming

Computer and Information Sciences

University of Strathclyde, Glasgow

October 8, 2023

This thesis is the result of the author’s original research. It has been

composed by the author and has not been previously submitted for

examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the

United Kingdom Copyright Acts as qualified by University of Strathclyde

Regulation 3.50. Due acknowledgement must always be made of the use of

any material contained in, or derived from, this thesis.

i

Abstract

The use of proof assistants as a tool for programming language theorists is becoming

ever more practical and widespread. There is a range of satisfactory implementations

of simply typed calculi in proof assistants based on dependent type theory.

In this thesis, I extend an account of Simply Typed λ-calculus so as to be able

to represent and reason about calculi whose variables have restricted usage patterns.

Examples of such calculi include a logic with an S4□-modality, in which certain variables

cannot be used “inside” a box (□); and Linear Logic, in which linear variables have to be

used exactly once. While there are existing implementations of some of these calculi in

proof assistants, many of these implementations share little with the best presentations

of simply typed calculi without variable usage restrictions, and thus end up being poorly

understood or suboptimal in facilitating mechanised reasoning.

Concretely, the main result of this thesis is a framework for representing and reason-

ing about a wide range of calculi with restricted variable usage. All of these calculi sup-

port novel simultaneous renaming and substitution operations. Furthermore, I provide

several other examples of generic and specific programs facilitated by the framework.

All of this work is implemented in the proof assistant Agda.

ii

Contents

Abstract ii

List of Figures vi

Acknowledgements ix

1 Introduction 2

1.1 Outline of the thesis . 5

1.2 Naming and notation conventions . 6

2 Mechanisation of simple types 8

2.1 Agda primer . 9

2.1.1 Lexical structure . 9

2.1.2 Functions, Π-types . 10

2.1.3 Data types . 12

2.1.4 Clausal definitions . 15

2.1.5 Records, Σ-types . 18

2.1.6 Colours . 21

2.2 Term representation . 21

2.3 Renaming and substitution . 27

2.3.1 Simultaneous renaming and simultaneous substitution 28

2.3.2 Proofs of admissibility of renaming and substitution 28

2.3.3 Syntactic kits . 31

2.4 Generic semantics . 33

iii

Contents

2.5 Generic syntax . 39

2.6 Related work . 44

2.6.1 Autosubst . 44

2.6.2 Second order abstract syntax . 46

2.6.3 Substitution-based semantics . 48

2.6.4 Nominal techniques . 49

2.6.5 Logical frameworks . 51

3 Linearity and modality 53

3.1 Intuitionistic S4 modal logic . 54

3.2 Intuitionistic Linear Logic . 61

3.2.1 The multiplicative-additive fragment 63

3.2.2 The !-modality . 64

3.2.3 Dual Intuitionistic Linear Logic 67

3.3 Mechanisations and systematisations of substructural logics 70

3.3.1 Typing with leftovers . 70

3.3.2 Yalla . 73

3.3.3 Co-De-Bruijn syntax . 74

3.3.4 Fitch-style modalities . 75

3.3.5 Systematisations of substructural logics 76

4 Usage restriction via semirings 81

4.1 Motivation for semiring annotations . 82

4.2 A usage-annotated calculus λR . 85

4.2.1 Other posemirings . 89

4.3 Bunched connectives . 90

4.3.1 λR stated using bunched connectives 93

4.3.2 Connection with bunched logic 93

4.3.3 Operations on bunched connectives 96

4.4 Additions to and variations of λR . 97

4.4.1 Alternative object-language connectives 97

iv

Contents

4.4.2 Adding inductive types and recursion 98

4.5 Representing existing linear and modal logics 102

4.5.1 Dual Intuitionistic Linear Logic 102

4.5.2 Pfenning-Davies . 106

4.6 Conclusion . 110

5 Renaming and substitution for λR 112

5.1 What are linear renaming and substitution? 112

5.2 Properties of linear environments . 117

5.3 Substitution is admissible in λR . 124

5.4 Comparison with Petricek’s substitution lemma 127

5.5 Conclusion . 129

6 Generic usage-annotated syntax 131

6.1 Descriptions of Systems . 132

6.2 Terms of a System . 134

6.3 More example syntaxes . 136

6.3.1 An encoding of graphs . 137

6.3.2 The system µµ̃ . 140

6.3.3 Duplicability and L/nL . 142

6.4 Conclusion . 146

7 Generic usage-aware semantics 149

7.1 Linear relations in Agda . 150

7.2 A layer of syntax is functorial . 152

7.3 The Kripke function space . 153

7.4 Semantic traversal . 155

7.5 Reifying the Kripke function space . 156

7.6 Renaming and substitution . 157

7.7 Conclusion . 159

v

Contents

8 Applications 160

8.1 A usage elaborator . 160

8.2 Normalisation by evaluation . 164

8.3 A denotational semantics . 170

8.4 Translating between λR and L/nL . 176

8.4.1 Encoding L/nL . 176

8.4.2 Translating between L/nL and λR 178

8.5 Conclusion . 184

9 Conclusions 186

9.1 Future work . 187

Bibliography 193

vi

List of Figures

2.1 A proof in Gentzen’s natural deduction syntax, and a proof using explicit

contexts (contexts coloured red) . 24

2.2 An example syntax description . 40

2.3 The grammar of typing rules . 40

3.1 The axioms and rules required in a traditional presentation of S4 55

3.2 The new rules of the Pfenning and Davies presentation of IS4. 57

3.3 Multiplicative-additive fragment of linear logic 64

3.4 The sequent calculus rules for the !-modality 65

3.5 The Benton et al. [1993] rules for the !-modality 66

3.6 Dual Intuitionistic Linear Logic . 69

3.7 Typing with leftovers, context and sequent syntax 71

3.8 Typing with leftovers, multiplicative fragment 71

3.9 Typing with leftovers, a selection of the additive rules 72

3.10 Typing with leftovers, a possible way to capture ! 72

4.1 The types of λR . 85

4.2 λR . 86

4.3 The bunched connectives . 92

4.4 λR stated using bunched connectives . 94

4.5 λR stated using bunched connectives in Agda 95

4.6 The rules of DILL, extended with additive connectives 103

4.7 Embedding of DILL and PD types into λR 104

vii

List of Figures

4.8 The rules of PD, extended with several standard connectives 106

6.1 A fragment of a usage-annotated µµ̃-calculus presented in traditional

sequent notation . 141

6.2 Linear/non-Linear Logic in traditional sequent notation 143

6.3 Linear/non-Linear Logic in bunched notation using {0, 1, ω} usage anno-

tations and with □0+∗ abbreviated to □ 145

8.1 Interpretation of application in the world-indexed relation semantics . . 175

8.2 Translation of types between L/nL and λR 179

viii

Acknowledgements

My first thanks go to my supervisor, Bob Atkey. The combination of his own knowl-

edge and his understanding of the lacks in my knowledge has let me have a positive

and fulfilling experience as a PhD student. The wider Mathematically Structured Pro-

gramming group at Strathclyde has also taught me much, well beyond what appears in

this thesis. The group has also often been the source of fun and excitement in research,

which I see as crucial to progress.

Special thanks go to Guillaume Allais, Jan de Muijnck-Hughes, and James McKinna,

all of whom have read all or part of this thesis in draft form and whose comments have

lead to great improvements in the final document. Similar thanks go to the anonymous

reviewers of the papers that have lead to and formed part of this thesis.

The programming language research community as a whole has helped me get to

where I am today. Interactions at conferences and other meetings have brought me

plenty of new perspectives. Additionally, starting even before my PhD studies, the

formerly Twitter, now Fediverse, community of researchers and practitioners have been

crucial in getting me interested in programming languages and various more specific

topics thereof.

I thank my family, particularly for our time together in the COVID-19

lockdown/work-from-home period. The pandemic caused difficulties for us all, but

a positive approach got us through it and let us take advantage of what we could. More

recently, I thank Ayaka, who has listened to and supported me over the last year of

write-up. Above all, she has been very patient, and with my thesis-writing now ending,

I hope that we can live our lives more fully together.

I have made many friends outside academia during my studies while living in Glas-

ix

Chapter 0. Acknowledgements

gow and, latterly, Edinburgh. Particularly, those of the Strathclyde Board Games

Society and Japanese language learning groups have given me much needed fun times

in evenings and weekends, as well as deeper friendships. I owe much of my good mood

and motivation to carry on to these people.

The work described in this thesis would not have happened without the Agda pro-

gramming language/proof assistant and both the contents and style developed in its

standard library. I thank all contributors to these tools, as well as everyone who has

offered help on how to use them. Similarly, the preparation of this thesis and related

papers was much aided by TEX, LATEX, and the various packages needed to practically

produce beautiful mathematical documents.

This document is adapted from the template by

Jethro Browell (https://www.overleaf.com/latex/templates/

thesis-template-for-university-of-strathclyde/nfnrnmjqyxqg), which was

licensed under CC BY 4.0.

x

https://www.overleaf.com/latex/templates/thesis-template-for-university-of-strathclyde/nfnrnmjqyxqg
https://www.overleaf.com/latex/templates/thesis-template-for-university-of-strathclyde/nfnrnmjqyxqg

Chapter 0. Acknowledgements

1

Chapter 1

Introduction

Programming language design has a history stretching back almost to the inception

of electronic computing. Programming language theory has arguably an even longer

history, with parts of mathematical logic developed in the early 20th century forming

the vocabulary of programming language theory as we know it today. Programming

language theory studies mathematical models of programming languages to help us

better understand programs in existing languages, and to inform the design of new

language features, new languages, and new programming paradigms.

Within programming language research, type theory is a methodology for classifying

program behaviour. The simplest and most common type systems classify programs by

what values they may return. For example, in many — perhaps most — widely used

programming languages, the compiler will keep track of the types of expressions and

their subexpressions, and give an error or warning to the programmer whenever there is

a mismatch between the expected type and the actual type. For example, the body of

a C function with return type char is a program that, if it returns a value, will return

a character. If that function has a parameter of type int, then we can compose it with

a function with return type int to build up a larger program. We expect type systems

to stop us from running programs with arguments of the wrong types. This holds of

both static and dynamic type systems — with a static type system, the compiler will

refuse to compile our code if we pass a char value to a function expecting an int,

while with a dynamic type system, our program will do a check before running the

2

Chapter 1. Introduction

function to make sure that we have passed it an int. The abstraction produced in

such simple type systems is the idea that a function will take arguments in accordance

with its parameter types and produce a result in accordance with its result type, and

furthermore, as readers, we do not have to inspect the function’s implementation to see

that these properties are true.

A more recent trend in type theory is to use types to describe other parts of a

program’s behaviour than what range of values it may return. For example, Java’s

checked exceptions can be seen as part of the static type system, in which programs are

classified by which exceptions they may throw. More generally, effect systems [Lucassen

and Gifford, 1988] classify programs based on all of the effects they may have — such

as reading input and writing to files, and also internally defined effects, such as non-

determinism and using an accumulator. In a type system which tracks effects (an effect

system), programs by default are pure (i.e. have no effects), with effects being opt-in.

Pure programs generally enjoy good properties, making them easy to reason about and

easy for an optimising compiler to optimise.

In this thesis, I consider the dual of effect systems — coeffect systems — as intro-

duced by Petricek et al. [2014]. In a coeffect system, we are interested not in what

extra behaviour a program may exhibit (as with effects), but rather what extra abilities

the context of a program may provide. Analogously to the case of effect systems, we

typically restrict our coeffect-free programs to be “more pure” than usual. A standard

example is to restrict to linear programs, in which each variable in the context is used

exactly once. The ability to duplicate and discard variables is then seen as a coeffect,

which can be tracked by a coeffect system. Restricting to linear programs may seem

like an arbitrary restriction at first, but the expectation of linearity arises naturally

in applications such as file-handling, session-typed communication, and approaches to

mutable memory. I introduce linearity and its applications more fully in chapter 3.

The work of this thesis relies upon type theory in two distinct ways. Firstly, as

I have introduced above, the main objects of study in this thesis are programming

languages with interesting type systems. Secondly, type theory provides the basis of

the proof assistant Agda I use to implement the aforementioned programming languages

3

Chapter 1. Introduction

and operations upon them. I will now introduce the idea of proof assistants.

A proof assistant, also known as an interactive theorem prover, is a piece of software

that allows for the encoding of mathematical definitions, theorems, constructions, and

proofs, and furthermore check that such encoded proofs are correct and that such en-

coded constructions are well formed. To truly be interactive, i.e. to actually assist, a

proof assistant will usually have a user interface which can read partial proofs, display

information about what more proof needs to be given, and provide actions that will

help complete the proof.

Proof assistants have seen increasing use in programming language research in recent

years. The most obvious reason why working in a proof assistant is seen as beneficial

is that it ensures correctness. If the proof assistant accurately implements a suitable

mathematical foundation, then any theorem proved in the proof assistant is guaranteed

to be a true theorem of that foundation. These guarantees of correctness are particularly

important when working with combinatorially complex mathematical objects, proofs

about which often require the consideration of a large number of cases. Programming

language syntaxes are often such complex objects, motivating the use of proof assistants

when studying programming languages.

A second reason to use proof assistants is for the assistance they provide when

exploring a mathematical theory. When we make a new definition, we may want to test

how it works in a special case, or what constructions it allows us to perform. In a proof

assistant, the assistance tools give us immediate feedback as to what moves are and

aren’t allowed. For example, if we define a complex type system, a proof assistant will

let us interactively build typing derivations, making clear any side conditions and types

of subderivations as we go. Also, as I do later in this thesis, a proof assistant allows us

to build a very general theory, and practically use that theory directly in more specific

cases without losing rigour.

Thirdly, analogously to how a strong static type system can give us more confidence

when refactoring a program, the constant checking of proofs in a proof assistant gives

us the confidence to change definitions and lemmas knowing that we will be guided

towards the parts of our theory that need to be correspondingly changed. This can help

4

Chapter 1. Introduction

if we are developing a new programming language with a changing specification.

Finally, many proof assistants — including Agda [Agda Development Team, 2023],

which I use in this thesis — double as programming languages themselves. This means

that we can write programs and prove properties of them using the same tool. Also,

many theorems proven in such a proof assistant have computational content. For exam-

ple, if we prove a normalisation theorem for a programming language, this will typically

yield a (verified) normalisation algorithm for it, which we can really run on a computer.

As such, a development in a proof assistant can provide a reference implementation of

a programming language, or even — as with Idris 2 [Brady, 2021], Lean 4 [de Moura

and Ullrich, 2021], and Cedille [Guneratne et al., 2016] — the actual implementation of

a programming language.

1.1 Outline of the thesis

This thesis proceeds as follows. The next two chapters, chapters 2 and 3, are introduc-

tory in nature, and cover two largely independent strands of prior work. In chapter 2, I

introduce existing methods of representing and reasoning about type systems in proof

assistants based on dependent type theory. I start from well established representations

of well scoped and well typed terms, and develop these towards a recent approach to

environment-based semantics given by Allais et al. [2021]. In chapter 3, I discuss the

challenges faced when one extends a treatment of a simple type system, such as that

given in chapter 2, to modal and linear type systems. We see that modal and linear type

systems apparently violate some of the nice properties of the simply typed λ-calculus

we required in chapter 2. I present a solution for intuitionistic S4 modal logic, but leave

a solution for linear logic to the following chapters.

In the following two chapters, chapters 4 and 5, I present a calculus λR parametrised

by a partially ordered semiring of usage annotations. In chapter 4, I define the calculus,

give some possible extensions, and show that it subsumes intuitionistic S4 modal logic

and Intuitionistic Linear Logic. In chapter 5, I show that λR enjoys generalised versions

of the nice properties required in chapter 2, and I proceed to give novel definitions

of simultaneous substitutions and their action on λR terms. These two chapters are

5

Chapter 1. Introduction

adapted from the work of Wood and Atkey [2021].

The remaining three main chapters, chapters 6 to 8, adapt the syntactic and seman-

tic framework of Allais et al. [2021], as presented at the end of chapter 2, to semiring-

annotated calculi. Chapters 6 and 7 generalise the work on λR presented in chapters 4

and 5, respectively. Chapter 6 shows how to formally describe the syntax of an arbitrary

semiring-annotated calculus, following the constructions used in chapter 4. Chapter 7

then provides the generic environment-based semantic traversal on such syntaxes, pro-

viding renaming and substitution as per chapter 5 for all syntaxes as special cases of the

generic traversal. Chapter 8 then gives further example uses of the generic traversal.

Finally, I conclude with chapter 9, which discusses the achievements of this thesis

and openings for future work.

1.2 Naming and notation conventions

I assume familiarity with the Curry-Howard correspondence [Howard, 1980] throughout

this thesis. I make no distinction between logics and type theories, and use terminology

from each interchangeably. Each following bullet point lists a collection of synonyms.

• assumption, hypothesis, variable

• proposition, formula, type

• connective, type former

• derivation, proof, term

• derivable (formula), inhabited (type)

I carry out mechanised constructions and proofs in the proof assistant and program-

ming language Agda [Agda Development Team, 2023]. Agda is based on Martin-Löf’s

intensional dependent type theory, so I similarly present non-mechanised constructions

and proofs assuming a foundation given by dependent type theory, in a style inspired

by the HoTT Book [Univalent Foundations Program, 2013]. I give a fuller introduction

to Agda in section 2.1.

6

Chapter 1. Introduction

This thesis is written in colour, but should be readable without. Agda code has

syntax highlighting, and various pieces of notation related to usage annotations are

coloured green for emphasis. As a test, the word colour in the first sentence of this

paragraph should appear with the first two letters red, the next two green, and the final

two blue, with the shades of red, green, and blue used for Agda code. Additionally,

the word green in the second sentence is written in the shade of green used for usage

annotations.

7

Chapter 2

Mechanisation of simple types

In this chapter, I review and justify the family of approaches usually used to represent

simple type systems inside dependently typed proof assistants. These approaches were

first presented by Altenkirch and Reus [1999], who showed a way of representing well

scoped terms in a language with polymorphic recursion, and extended the representation

to well typed terms in a language with dependent types. The representation of terms

relies on indexing on both a context — giving the types of all the free variables — and a

type for the term itself. A basic operation on terms is simultaneous substitution, which

replaces each variable in the context by a term in another context.

This chapter almost entirely reviews prior work. First, in section 2.1, I give an

introduction to Agda, the proof assistant I work in throughout this thesis. Then, in

section 2.2, I use a presentation of the dependently typed encoding of the simply typed

λ-calculus from Altenkirch and Reus [1999] to set notational conventions. Section 2.3

presents the unpublished work of McBride [2005], successively deriving simultaneous

renaming and simultaneous substitution for the terms defined in section 2.2. The rest of

the chapter generalises the shared core of renaming and substitution in two dimensions:

in section 2.4 following Allais et al. [2017] to cover semantic traversals, and in section 2.5

following Allais et al. [2021] to cover a whole range of simply typed syntaxes with

binding, rather than just a specific syntax. Finally, I review some related work in

section 2.6.

8

Chapter 2. Mechanisation of simple types

2.1 Agda primer

I use the proof assistant and programming language Agda throughout this thesis, with

Agda code being used particularly in this chapter and chapters 6 to 8. As such, it is

important for the reader to be able to read basic Agda syntax in order to benefit from

the parts of the exposition that reside in code listings. The syntax of Agda is broadly

similar to that of Haskell [Marlow, 2010], and relatively close to that of Standard ML,

OCaml, and Coq version 8’s Gallina sublanguage [Coq Team, 2023, Leroy et al., 2022,

Milner et al., 1997]. I will assume that the reader is able to read basic Haskell code,

and spend most time explaining differences thereof.

2.1.1 Lexical structure

Agda is extremely liberal in its set of allowed names. There is just a single lexical

class (unlike in Haskell, where, for example, constructors start with a capital letter

and definitions start with a lowercase letter), and names can be any string of Unicode

characters except whitespace and special characters .;{}()@", apart from those strings

reserved as keywords or literals. Therefore, we can introduce names like 0x-+-λ→ to

stand for any kind of identifiable thing. With such free-form names, ample spacing is

required between identifiers. For example, while 0 ≤ 1 is a possible expression containing

three identifiers, 0≤1 is a single valid identifier. Only the special characters may appear

next to names without being separated by whitespace.

A character with unique behaviour in Agda’s syntax is the underscore (_). Within a

name, an underscore signifies that the name will function as a mixfix operator, allowing

for an argument in the position of the underscore. For example, the full name of the ≤

operator used in the previous paragraph is _≤_, signifying that it can take an argument

to its left and its right. We can also introduce closed operators, like [_], which can take

an argument between the square brackets (e.g. [1], with spaces still being important).

Mixfix operators can be partially applied by leaving underscores in the name in the

application. For example, _≤ 1 could be the predicate asserting that a number is less

than or equal to 1.

9

Chapter 2. Mechanisation of simple types

On its own, an underscore has a completely different meaning, which can depend

on context. In patterns, an underscore has the same meaning as it has in Haskell and

ML — it holds the place of a pattern variable, but does not name that variable. In

expressions, an underscore stands for an unspecified subterm which will be solved by

unification [Abel and Pientka, 2011, Miller, 1992]. The solving of unspecified terms is

canonical and respects βη-equality, unlike in Coq.

Spacing is important particularly important when dealing with underscores. For

example, _≤ _ (with a space after the ≤ but not before) standing for the predicate

asserting that a number is less than or equal to some unspecified number.

Like Haskell, Agda’s syntax is indentation-sensitive. The distinctions conveyed by

indentation are largely obvious or intuitive to human readers (for example, allowing for

line-continuation or delineating nested modules), so I will not discuss them explicitly

here.

2.1.2 Functions, Π-types

Simple function types take the form A → B, coinciding with Haskell’s syntax. Also as in

Haskell and ML, the function arrow nests to the right. However, Agda has a termination

checker ensuring that all definable functions are total, so many Haskell functions do not

have a corresponding Agda function.

The key feature distinguishing Agda from Haskell is the presence of arbitrary de-

pendent types, including dependent function types (Π-types). The basic syntax for

Π-types is (x : A) → B, where variable x can occur free in expression B. However, there

are several syntactic conveniences I use throughout the code listings. For one, iterated

Π-types can be abbreviated so that (x : A) → (y : B) → C is written just (x : A) (y

: B) → C, omitting the first arrow. For another, prefixing an arrow with the ∀ symbol

allows us to omit domain types. For example, ∀ x → B is equivalent to (x : _) → B.

Notice that this is a very different type to x → B, which is a non-dependent function

type equivalent to (_ : x) → B. When writing ∀ x → B, we assume that the occurrence

of x in B tells us what type x should have (i.e. there is enough information to solve the

underscore in (x : _) → B).

10

Chapter 2. Mechanisation of simple types

Just like in Haskell, functions in Agda can be introduced via λ-abstractions and

clausal definitions, and are applied by juxtaposition. Agda also includes extended λ-

abstractions, introduced via equivalent syntaxes λ where x → M and λ { x → M },

which allow for pattern-matching on the variable x (or all of the variables, if there are

multiple variables).

Agda allows for arbitrary function arguments to be marked as implicit by replacing

the round brackets in the type by curly braces. For example, if we have f : {x : A}

→ B, then the argument to f is implicit. Being implicit means that an occurrence of f

is treated as if it has been applied to an underscore, giving the expression f the type

B[_/x] (i.e. B with _ substituted in for x; the substitution syntax is not part of Agda

syntax). An implicit argument can also be given explicitly in two ways. The first of a

series of implicit arguments can be given by surrounding the argument in curly braces,

and any other implicit arguments in the series can be given by including the name of

the argument. For example, f {_}, f {x = _}, and just f are all equivalent expressions,

and the underscore can be filled in in either of the first two expressions to provide an

actual value for the implicit argument. Implicit arguments are usually left out of λ-

abstractions and clausal definitions, but can be bound to names and pattern-matched

on using the same syntax as in expressions.

There are a few other places in the syntax using single curly braces, all of which

have meanings related to implicit arguments. I also make a small amount of use of

double curly braces ({{ and }}), which denote arguments which are to be solved by

instance resolution. Instance resolution is very similar to Haskell’s typeclass resolution

— finding non-canonical solutions based on the instances in scope.

Agda uses Π-types where in Haskell we would use polymorphism. For example,

we can define an identity function as below. The definition relies on quantifying over

terms of type Set, i.e. (small) types. This definition also gives an example of defining

a function with an implicit argument (X), which can typically be inferred from either

the argument type or the return type, so can be omitted.

id0 : {X : Set} → X → X

id0 x = x

11

Chapter 2. Mechanisation of simple types

An unfortunate feature of the definition id0 is that we cannot apply it to the expres-

sion Set, because Set contains only small types, and itself is a large type. We can work

around these size issues using universe level polymorphism [Bezem et al., 2022], as in

the following definition.

id : {ℓ : Level} {X : Set ℓ} → X → X

id x = x

Universe levels start at 0ℓ, with Set being an alias for Set 0ℓ (and also Set0). Larger

levels can be produced with the successor operator suc, and we can take the least upper

bound of two levels using the operator _⊔_.

2.1.3 Data types

Agda’s data-declarations are similar in scope to Haskell’s, with the addition of indexing

by terms of arbitrary type. data-declarations give us indexed inductive sum-of-product

types.

All data-declarations use GADT syntax. The body of a declaration comprises a list

of constructor names paired with their types. Where two constructors have the same

type, they may be written on the same line with their names separated by whitespace,

as I do with the two constructors of Bool below. Bool has two constructors — true and

false — both of which have type Bool. N also has two constructors, where zero has type

N and suc is inductive, with type N → N.

data Bool : Set where

true false : Bool

data N : Set where

zero : N

suc : N → N

Bool and N are both types, and indeed small types, as we can see by the fact that

they are annotated to have type Set. We can also use data-declarations to define type

families in various ways. The simplest is to add parameters, as in the type family List

below. Parameters always appear to the left of the colon of the first line of the data-

declaration, and are constant throughout the data-declaration. Variables to the left of

12

Chapter 2. Mechanisation of simple types

the colon can appear in the body of the data-declaration without further quantification.

data List (X : Set) : Set where

[] : List X

:: : X → List X → List X

Slightly more flexible than parameters are Protestant indices1. Protestant indices

also appear to the left of the colon, and also must appear unmodified in the return type of

all of the constructors. However, they may take different values in inductive appearances

of the type family in the argument types of constructors. Protestant indices give a

generalisation of polymorphic recursion to indices of arbitrary type [Henglein, 1993,

Mycroft, 1984].

I give two examples of type families with Protestant indices. The first, NestedList

is standard from the polymorphic recursion literature. It is worth noting at this point

that Agda permits overloading of constructors, which are disambiguated by the type

family they are being used to construct. This overloading allows List and NestedList

to have constructors with the same names without confusion. The second example,

ScopedTerm is a data structure representing well scoped untyped λ-calculus terms. The

Protestant index s describes the number of variables in scope, which increases by 1 when

we introduce a λ-abstraction. I will introduce Fin, a type family with a specified natural

number of inhabitants, in the next set of examples. As a syntactic note, in the type of

the app constructor, I use the two variable names M and N separated by whitespace to

name two arguments with the same type.

data NestedList (X : Set) : Set where

[] : NestedList X

:: : X → NestedList (List X) → NestedList X

data ScopedTerm (s : N) : Set where

var : Fin s → ScopedTerm s

1The terminology of Protestant/Catholic indices is due to Peter Hancock. The mnemonic is that
Catholics believe in transubstantiation, which is seen as analogous to the instantiation of Catholic
indices with expressions that occurs during dependent pattern matching.

13

Chapter 2. Mechanisation of simple types

lam : ScopedTerm (suc s) → ScopedTerm s

app : (M N : ScopedTerm s) → ScopedTerm s

The most general way to make a type family is to introduce a Catholic index. The

types of Catholic indices are specified to the right of the colon, and can be instantiated

arbitrarily throughout the data-declaration. Catholic indices are not in scope for the

body of the data-declaration, so the values filling them may need to be quantified over

in each constructor. When this quantification is over a large type, like Set, the type

family being defined will itself need to be large, e.g. inhabiting Set1. This is a major

reason for not defining types like List and NestedList using Catholic indices.

I give two examples of type families with Catholic indices. The first is the Fin family,

as used in ScopedTerm above. By inspection of the return types of the constructors,

there is no way to produce a canonical inhabitant of Fin zero. For Fin (suc n), we

can potentially use either of the constructors. Either we use zero to get a canonical

inhabitant, or if we can make a number with a smaller bound (i.e. an inhabitant of Fin

n), we can use suc to produce a larger number.

data Fin : N → Set where

zero : ∀ {n} → Fin (suc n)

suc : ∀ {n} → Fin n → Fin (suc n)

The second example of a type family with Catholic indices is more general in na-

ture. Below I define propositional equality, written _≡_. It has two parameters and

one Catholic index (though the standard library version of propositional equality I use

throughout this thesis has an extra level parameter for the sake of universe level poly-

morphism). The constructor refl constructs an inhabitant of M ≡ N only when N is

definitionally equal to M (because terms are considered “the same” to the type checker

exactly when they are definitionally equal). Notice that refl does not quantify over x

because x is already in scope as a parameter.

data _≡_ {X : Set} (x : X) : X → Set where

refl : x ≡ x

14

Chapter 2. Mechanisation of simple types

It is through type families like _≡_ that we can state and prove mathematical

theorems in Agda. In the following subsection, I show how to use such indexed type

families.

2.1.4 Clausal definitions

Clausal definitions of functions in Agda look very similar to their equivalents in Haskell.

However, definitions in Agda regularly make use of dependent pattern matching, which

is our primary way of using indexed data types. Recursive definitions are also conser-

vatively checked for termination.

I will explain the salient aspects of clausal function definitions via two examples.

The first, unimaginatively named lemma, shows a simple case where pattern matching

modifies the context through unification of Catholic indices. The second, named elim-

Fin-zero, gives an example of proper dependent pattern matching.

In the following definition lemma, we want to chase equations in order to prove that

x is propositionally equal to z. We start with the following incomplete definition, where

the expression { }0 marks an interaction point, or hole, in the program, to which we

can apply interactive commands to complete the program.

lemma : ∀ {A : Set} {x y z : A} → x ≡ y → z ≡ y → x ≡ z

lemma p q = { }0

As a first step, I choose to match on the variable p : x ≡ y. The only applicable

pattern is refl. Doing this match has the effect of unifying y — which is taking the

position of the Catholic index of _≡_ — with x — which is the value of the index

specified in the type of refl. Local variables act as unification variables, so the unification

succeeds with most general unifier [x := x, y := x]. Therefore, the type of q becomes z

≡ x.

lemma : ∀ {A : Set} {x y z : A} → x ≡ y → z ≡ y → x ≡ z

lemma refl q = { }0

The next step is to match on q. This similarly unifies z and x, making the conclusion

15

Chapter 2. Mechanisation of simple types

type z ≡ z. Finally, this conclusion type is in the image of the refl constructor, so we

may fill the hole with refl.

lemma : ∀ {A : Set} {x y z : A} → x ≡ y → z ≡ y → x ≡ z

lemma refl refl = refl

Full dependent pattern matching, as described by McBride and McKinna [2004],

is when the unification of indices described above takes account of constructors. In

particular, the constructors of a data type satisfy the “no confusion” property — con-

structors are injective and mutually disjoint. Where we encounter disjoint constructors

during unification, we may dismiss the corresponding case as impossible. Consider the

following example (elim-Fin-zero). We start with an argument i : Fin zero, and consider

which constructors could possibly construct such a value. However, as noted earlier,

both constructors of Fin target successor values of the index, from which zero is dis-

joint. Therefore, both cases are impossible. The notation when all cases are impossible

is to place empty round brackets () in the place of the impossible argument, and to not

provide a right-hand side to the clause.

elim-Fin-zero : ∀ {A : Set} → Fin zero → A

elim-Fin-zero ()

As an example of the injectivity of constructors, the obvious example is to internalise

the proof of injectivity for a given constructor, as I do in suc-injective. We start with an

argument p : suc m ≡ suc n and match on it. This time, we do have a possible pattern

— refl — but working out how to change the context relies on unifying suc m with suc n.

We are justified in doing this, with most general unifier [m := m,n := m], because suc is

injective (with respect to propositional equality). If the checker for dependent pattern

matching did not know that suc was injective — for example, if it were instead a defined

function — then the unification would fail. This leads to the intuition that constructors

and variables are well behaved with respect to dependent pattern matching, while other

expressions are not.

suc-injective : ∀ {m n : N} → suc m ≡ suc n → m ≡ n

suc-injective refl = refl

16

Chapter 2. Mechanisation of simple types

Ordinarily, each clause of a definition gives rise to a definitional equation between

its left-hand side and right-hand side. In intensional type theory, as implemented by

Agda, definitional and propositional equality are contrasted to each other. Definitional

equality corresponds to a decidable fragment of the natural equational theory of the

type theory. As such, definitional equality is an entirely metatheoretic notion, and

we can neither assume nor prove directly definitional equations within the language.

Definitional equality is sometimes also called judgemental equality, because it forms a

judgement which plays a part in the rules of the type theory. As well as from the clauses

of definitions, we also get definitional equations from β-reductions of λ-abstractions and

η-laws of functions and records. Because the type checker treats definitionally equal

terms equivalently, we are able to refactor up to definitional equality without changing

any downstream code.

On the other hand, propositional equality is a notion internal to the language, as

we have seen by defining propositional equality (_≡_) and proving things about it

(lemma). Propositional equality is sometimes known as typal equality or mathematical

equality. The latter name comes from the fact that propositional equality is the closest

notion to what mathematicians usually call equality, because, for example, it allows us

to prove things like m + n ≡ n + m for all natural numbers m and n. Propositional

equality satisfies Leibniz’ law, meaning that an inhabitant of a type A can be coerced

into an inhabitant of any type propositionally equal to A. However, this cast requires

marking in the code, so is less convenient to use than definitional equality.

Definitional equality between two terms implies their propositional equality, because

exactly when two terms are definitionally equal, the type checker is happy to accept refl

as a proof. This relationship between the two is simple, but can still be deceptive. For

example, consider the notion of injectivity with respect to definitional and propositional

equality. A function f is injective (with respect to some notion of equality ≈) when,

for all x and y, we have f x ≈ f y → x ≈ y. Because ≈ appears both covariantly

and contravariantly in this definition, we have implications in neither direction between

definitional injectivity and propositional injectivity. Indeed, we can find examples of all

four possibilities: constructors are injective in both senses; type formers, like Fin and

17

Chapter 2. Mechanisation of simple types

List, are definitionally injective but not propositionally injective; λ (n : N) → n + n

can be proven to be propositionally injective, but is not definitionally injective because

+ is not injective; and nearly everything else is not injective in either sense.

Because the notions of definitional and propositional injectivity are incomparable,

so too are the corresponding unification procedures. Propositional unification (using

only the injectivity of constructors) is used during dependent pattern matching, while

solving of implicit arguments and underscores in expressions is done by definitional

unification.

2.1.5 Records, Σ-types

While Agda provides built-in basic Π-types, with special syntax described in sec-

tion 2.1.2, it does not do the same for Σ-types. Instead, the default way to get the

functionality of Σ-types is to declare record types, similarly to how we get sums via

data-declarations. However, the standard library does provide Σ-types, via record

types, using the following declaration.

record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where

constructor _,_

field

proj1 : A

proj2 : B proj1

As does the standard library, I will begin to use universe level polymorphism in these

example definitions. Here, a and b are the levels of the two projections. The level of

the record type must be at least the level of the type of each field, and in this case, the

smallest such level is a ⊔ b. As for the main points of interest in this record-declaration,

it contains two fields. The first, proj1, simply has type A. The second, proj2, then has

a type dependent on the value of the first field. Additionally, we give this record type

a named constructor _,_. Any record type can also be constructed using the more

verbose syntax record { proj1 = { }1 ; proj2 = { }2 }.

The standard library provides various notations for Σ-types, useful in various situ-

ations. In this thesis, I use Σ[x ∈ A] B x and ∃ \ x → B x as equivalent notations for

18

Chapter 2. Mechanisation of simple types

Σ A B. Indeed, the η-contracted form can be used with ∃, as in ∃ B (\ is an alternative

notation for λ, as in Haskell). Σ also specialises to non-dependent products, as given by

the infix operator _×_. This is achieved by setting the parameter B to be a constant

type family. The resulting operator _×_, as well as the non-dependent function type,

behave better than their dependent counterparts with respect to unification because

they allow us to remain in the first order fragment of higher order unification.

There are two main ways of using the fields of a record. The first is to put the

projections into scope using open Σ, and then to use the field names to project out of

arbitrary terms of Σ-type. This is what I will always do when using the Σ-type family.

Within this paradigm, there are two further notational choices. Either, we can use the

field names as functions, so that z = proj1 z , proj2 z, or we can use postfix projections

via the space-dot notation, as in z = z .proj1 , z .proj2. I tend to prefer the latter,

also using it occasionally in ordinary mathematical notation (without the space). Both

notations can also be used on the left-hand side of a clausal definition as copatterns.

Copatterns let us think of records as being function-like, with the fields of a record type

being the possible arguments we can pass to such a function.

The second way of using the fields of a record requires a motivating example. Con-

sider the below definition of the type of semigroups at universe level ℓ. A semigroup has

a carrier set, a binary operation on that set, and an associativity law for that binary

operation.

record Semigroup ℓ : Set (suc ℓ) where

infix 5 _•_

field

Carrier : Set ℓ

• : Carrier → Carrier → Carrier

assoc : ∀ x y z → (x • y) • z ≡ x • (y • z)

In order to use the fields of Semigroup in the intended way, we do not open them

into global scope. Doing so would mean that, for example, _•_ would take three

arguments: the semigroup and its two intended arguments. Instead, we get to the point

where we have a semigroup G in scope and use open Semigroup G to put into scope

19

Chapter 2. Mechanisation of simple types

the components of G. Then, the name Carrier in scope will refer to the carrier set of

G, the name _•_ will refer to the binary operator (which really takes two arguments),

et cetera. Doing this gives the impression of working “inside” G, which is the way I

typically work with algebraic sets with structure.

By η-equality, two inhabitants of a record type are definitionally equal exactly when

they agree definitionally on all fields. This often makes record types much more con-

venient to work with than the corresponding single-constructor data types, which do

not enjoy any η-laws. Notably, all inhabitants of the record type ⊤ with no fields are

definitionally equal.

Along with Σ and ⊤, there are two more general-purpose record types I need to

cover which take advantage of two special features of record-declarations (and also

data-declarations, but I use record-declarations for the convenience reason given in

the previous paragraph). The first feature is that the universe level of a record type has

a lower bound (the level of each field) but no upper bound. Therefore, we can introduce

the following declaration Lift, which takes a type A at level a and produces an equivalent

type at a potentially higher level a ⊔ ℓ. This type former is useful in situations which

require a type at a specific level, such as when constructing a type using a function.

record Lift {a} ℓ (A : Set a) : Set (a ⊔ ℓ) where

constructor lift

field lower : A

The other interesting property we get from record-declarations is that the result-

ing type family is definitionally injective in its parameters. Therefore, record types

behave well in the form of unification that solves implicit arguments. We can use this

property to take any type family F and produce an equivalent family Wrap F which is

definitionally injective.

record Wrap {a ℓ} {A : Set a} (F : A → Set ℓ) (x : A) : Set ℓ where

constructor mk

field get : F x

As an example, if we have a variable f : Wrap F y and pass it to a function with

20

Chapter 2. Mechanisation of simple types

a type of the form ∀ {x} → Wrap F x → _, Agda will successfully unify the type of f

with the expected type of the argument, setting [x := y]. However, without the Wrap,

we would need to unify F y with F x, which would fail if F were not injective, because

there may be multiple acceptable values of x up to definitional equality.

The version of Wrap found in Agda’s standard library is significantly more compli-

cated to allow for type families with arbitrarily many arguments in a convenient syntax,

using the n-ary functions of Allais [2019]. The version in the standard library is the one

I use in this thesis. In fact, both versions of the Wrap type family are the first pieces of

novel work to be presented in this thesis.

2.1.6 Colours

I use the “Conor colours” option for Agda syntax highlighting. This set of colours is

inspired by Conor McBride’s syntax highlighting for Epigram 2. The colour given to

a name is determined by the type of declaration that name is bound to. The main

colours are blue for types and type families, red for constructors of data types and

fields of records, green for definitions which may unfold/compute, and purple for local

variables.

Separately, I use green in many places for usage annotations in traditional typeset

mathematical notation. This usage of green contrasts only with ordinary black text.

2.2 Term representation

The main use I have for Agda in this thesis is to represent and reason about programming

languages. In particular, I am interested in representing core languages or core calculi.

Given a standard multi-pass compiler, the core language can be identified as the first

stage after which there can be no compile-time errors. In other words, (some) terms

of the core language arise from taking the source code for a term, parsing it, scope-

checking it, type-checking it, and doing whatever other static checks are done to it.

Core language terms can also arise via optimisations on other core language terms,

or could not actually appear in the compilation of any real program, but nonetheless

21

Chapter 2. Mechanisation of simple types

be potentially handled by the optimiser and backend. The core language can also

be thought of as a representation of the meaningful part of a programming language,

excluding (meaningless) erroneous programs.

In most compilers, the core language is represented as an annotated abstract syntax

tree. By construction, the abstract syntax tree representation makes syntactically ill

formed programs unrepresentable. When representing a core language in a dependently

typed language, including Agda, we can take this idea further to make ill scoped, ill

typed, and otherwise meaningless programs unrepresentable. Thus, we can truly define

a core language, and moreover reason mathematically about it.

As is standard in the study of functional programming languages, I will take the core

languages I consider to be variants of the simply typed λ-calculus [Barendregt, 1993,

Church, 1940]. As part of the Curry-Howard correspondence [Howard, 1980], terms of a

typed λ-calculus correspond to derivations in a natural deduction system, and therefore

we can take inspiration in terms of definitions and methodology from logic when we come

to mechanise core calculi in Agda. We could mechanise Gentzen’s original definition

of a natural deduction system directly, but this definition is quite complicated. In

particular, if we want to give derivations an inductive definition, the use of the discharge

mechanism means that we actually need an inductive-inductive type — derivations,

particularly those using →-introduction, can involve references to assumptions within

their subderivations. An inductive-inductive definition of derivations would complicate

our programs and proofs about natural deduction derivations, so I choose an alternative

representation.

Indeed, most authors since Gentzen, whether mechanising their work or not, have

opted to replace discharge of assumptions by explicit contexts and a variable rule. Con-

texts can be justified as a way to keep track of undischarged assumptions. In particular,

we only produce derivations in the presence of a known collection of free variables spec-

ified by the context. In other words, derivations are indexed over their free variables

and their types. When using an assumption within a derivation, we must say which

free variable it corresponds to. Free variables are introduced by variable-binding rules,

like →-introduction. Figure 2.1 gives an example of the same derivation written in

22

Chapter 2. Mechanisation of simple types

Gentzen’s style and in the explicit context style.

Explicit contexts can be seen as a mechanism for encoding a natural deduction

system as a sequent calculus. However, the natural deduction character of the system

is maintained by ensuring that the resultant sequent calculus is really an encoding of a

natural deduction system. Concretely, this means that rules can only interact with the

context in restricted ways:

• There is a designated variable rule, stating that any variable in the context can

serve as a derivation of its type.

• Non-variable rules may only require subterms with extended contexts, i.e., sub-

terms in which new variables have been bound. Non-variable rules are parametric

in the existing free variables.

Having chosen to use explicit contexts, the mechanisation must have a chosen rep-

resentation of contexts as a data structure. While the notation in figure 2.1 uses names

f and x for variables, I opt for a nameless representation. In a nameless representation,

variables are identified by their position in the context, rather than by a name. The

absence of names means that α-equivalence is just on-the-nose equality, and also that

we never have to reason about freshness of names. Agda does not have support for

nominal techniques [Gabbay and Pitts, 2002], which may have made names a better

option.

Most mechanisations choose contexts to be an inductive list of object-language types.

However, I instead choose a functional, tree-shaped representation, as shown with the

type Ctx. The type LTree is the inductive type generated by leaves ([-]) and nullary (ε)

& binary (_<+>_) nodes, and serves as a generalised “length” of the context. The

tree shape makes concatenation definitionally injective, so that in cases where multiple

new variables are bound in a subterm (for example, ⊗-elimination), Agda’s unification-

based solving will be more able to infer which variables have just been bound. Within

a given t : LTree, we can define the positions of t using Ptr. A pointer (Ptr) into a tree

picks out a leaf ([-]) following a path of lefts (↙) and rights (↘) at any binary nodes

encountered.

23

Chapter 2. Mechanisation of simple types

[A
→

A
→

B
]f

[A
]x

→
-E

A
→

B
[A

]x
→

-E
B

→
-I

x

A
→

B
→

-I
f

(A
→

A
→

B
)
→

(A
→

B
)

va
r
f

f
:
A

→
A

→
B
,x

:
A

⊢
A

→
A

→
B

va
r
x

f
:
A

→
A

→
B
,x

:
A

⊢
A

→
-E

f
:
A

→
A

→
B
,x

:
A

⊢
A

→
B

va
r
x

f
:
A

→
A

→
B
,x

:
A

⊢
A

→
-E

f
:
A

→
A

→
B
,x

:
A

⊢
B

→
-I

x

f
:
A

→
A

→
B

⊢
A

→
B

→
-I

f

⊢
(A

→
A

→
B
)
→

(A
→

B
)

F
ig

ur
e

2.
1:

A
pr

oo
f
in

G
en

tz
en

’s
na

tu
ra

ld
ed

uc
ti

on
sy

nt
ax

,a
nd

a
pr

oo
f
us

in
g

ex
pl

ic
it

co
nt

ex
ts

(c
on

te
xt

s
co

lo
ur

ed
re

d)

24

Chapter 2. Mechanisation of simple types

data LTree : Set where

[-] : LTree

ε : LTree

<+> : (s t : LTree) → LTree

data Ptr : LTree → Set where

here : Ptr [-]

↙ : ∀ {s t} → Ptr s → Ptr (s <+> t)

↘ : ∀ {s t} → Ptr t → Ptr (s <+> t)

I use Ptr to form a type family of LTree-indexed vectors Vector. These vectors serve

as the data structure containing the types, and in later chapters usage information, of

contexts. The advantages of the functional vector representation will not become clear

until later chapters — particularly the example in section 8.1, where I make use of the

ease of look-up and the η-law of functions. However, I claim for now that there is little

to no disadvantage in the functional vector representation — in particular, we have

no need for function extensionality principles because we never talk about equality of

contexts. For example, instead of using an equality of contexts to coerce a term, we can

use renaming.

Vector : Set a → LTree → Set a

Vector A s = Ptr s → A

The basic operations for building vectors from parts are [_] to create a singleton

vector, [] to create an empty vector, and _++_ to append two vectors.

The shape of the context is usually not worth indexing over in term representation,

so I hide this index using the record type Ctx. I also instantiate the element type of

these vectors to Ty, the type of object-language types.

record Ctx : Set where

constructor ctx

field

25

Chapter 2. Mechanisation of simple types

{shape} : LTree

ty-ctx : Vector Ty shape

open Ctx public

The three operators for building vectors lift to operations on Ctx by suffixing c —

giving us [_]c, []c, and _++c_.

Our first data structure involving contexts is that of intrinsically typed variables. A

variable of type Γ ∋ A is given by a path idx to a type in Γ, together with a proof tyq

that this type is equal to A.

record _∋_ (Γ : Ctx) (A : Ty) : Set where

constructor el

field

idx : Ptr (Γ .shape)

tyq : Γ .ty-ctx idx ≡ A

open _∋_ public

Variables embed into terms via the var constructor of the family _⊢_ of intrinsically

simply typed terms. The only other syntactic forms we consider for now are the elimi-

nator and constructor of function types _‘→_ — app and lam. Application app takes

two subterms of the appropriate types, while the subterm of λ-abstraction lam is in an

extended context Γ ++c [A]c — Γ concatenated with a singleton context containing

the type A.

data _⊢_ (Γ : Ctx) : Ty → Set where

var : ∀ {A} → Γ ∋ A → Γ ⊢ A

app : ∀ {A B} → Γ ⊢ A ‘→ B → Γ ⊢ A → Γ ⊢ B

lam : ∀ {A B} → Γ ++c [A]c ⊢ B → Γ ⊢ A ‘→ B

Using this encoding, the Church numeral for 2 appears as follows. In standard

notation, this would be λf. λx. f (f x). To refer to f in the main body of the expression,

we skip one binder (using ↙) and pick the next one (using ↘) and pick its only bound

26

Chapter 2. Mechanisation of simple types

variable (using here). To refer to x, we do not skip its binder, instead picking it and its

only bound variable.

two : []c ⊢ (ι ‘→ ι) ‘→ (ι ‘→ ι)

two = lam (lam

(app (var (el (↙ (↘ here)) refl))

(app (var (el (↙ (↘ here)) refl)) (var (el (↘ here) refl)))))

2.3 Renaming and substitution

A basic operation on any syntax with variables is substitution — the replacement of

variables in a term by terms with the same type as the variables. In a sense, this is the

defining operation of variables — a variable is a placeholder for a term, or equivalently

in logic, a hypothesis is a placeholder for an arbitrary proof. In a type theory or

logic, terms can bind variables, and we will typically have operational semantics rules

combining a term binding a variable with a term that is to be substituted into the place

of that variable, like the β-rule for λ-calculus functions.

While substitution has this extra role in a lot of the syntaxes with binding we

care about, variable-binding also significantly complicates the substitution operation.

Substitution acts on the free variables of a term, replacing them by terms, but binders

mean that some subterms have more free variables than our original term. This causes

different challenges for different representations of terms. For example, with named

variables and shadowing, naïvely defined substitution could fall foul of variable capture.

In our approach, based on De Bruijn indices, the difficulty is that an index i outside a

binder of n variables corresponds to an index n+ i inside the binder. Therefore, when

substituting under a binder, we must first increment any free variables contained in

terms we are substituting in, which is a form of renaming. Renaming replaces each free

variable by another free variable, and is a special case of substitution. We must, however,

define renaming before substitution, so as to avoid the definition of substitution being

circular. Renaming avoids a similar circularity because when renaming goes under a

binder, we only have to increment each variable being renamed in, rather than each

27

Chapter 2. Mechanisation of simple types

variable in each term being substituted in.

In this section, I formally implement simultaneous renaming and substitution for the

terms defined in the previous section. Simultaneous substitution turns out to have a

simple definition, which generalises into other algorithms over terms with binders. The

section concludes with a unified implementation of renaming and substitution, leaving

further generalisation to the next section.

2.3.1 Simultaneous renaming and simultaneous substitution

A simultaneous renaming from Γ to ∆ is a type-preserving map from variables in ∆

to variables in Γ, while a simultaneous substitution is a map into terms in Γ. While

simultaneous substitution gives us a notion of one context being derivable from another,

simultaneous renaming gives a similar notion of derivability restricted to structural rules.

In the derivation below, we assume the existence of a derivation of B,C → C ⊢ C,

and by the admissibility of substitution we thus have a derivation of A → B,A ⊢ C.

Intuitively, the context A → B,A derives the context B,C → C, so anything derived

from B,C → C can also be derived from A → B,A. We see formally that A → B,A

derives B,C → C by deriving each element of the latter from the former — hence the

first two premises of the Subst rule below, deriving B and C → C from A → B,A.

Π
A → B,A ⊢ B

Var
A → B,A,C ⊢ C

→-I
A → B,A ⊢ C → C B,C → C ⊢ C

Subst
A → B,A ⊢ C

where Π :=
Var

A → B,A ⊢ A → B
Var

A → B,A ⊢ A
→-E

A → B,A ⊢ B

2.3.2 Proofs of admissibility of renaming and substitution

A renaming from Γ to ∆ is a map from variables in ∆ to variables in Γ, represented in

Agda as follows.

28

Chapter 2. Mechanisation of simple types

Ren : (Γ ∆ : Ctx) → Set

Ren Γ ∆ = ∀ {A} → ∆ ∋ A → Γ ∋ A

The action of a renaming ρ on terms is given by ren ρ, with ren defined below. The

idea of simultaneous renaming is to preserve the structure of the term, but replace all

of the variables from ∆ by variables from Γ, with the mapping given by the renaming

ρ.

ren : ∀ {Γ ∆ A} → Ren Γ ∆ → ∆ ⊢ A → Γ ⊢ A

ren ρ (var x) = var (ρ x)

ren ρ (app M N) = app (ren ρ M) (ren ρ N)

ren ρ (lam M) = lam (ren (bindRen ρ) M)

The var case is where the action of the renaming happens: the variable x from ∆ is

mapped to the variable ρ x from Γ. In the app case, we have terms M : ∆ ⊢ A ‘→ B and

N : ∆ ⊢ A. We may apply ren ρ recursively to both M and N to change their contexts

from ∆ to Γ, and the app constructor then produces the desired term in Γ. Finally, in

the lam case, we get a term M : ∆ ++c [A]c ⊢ B and, after introducing a lam on the

right, are in need of a term of type Γ ++c [A]c ⊢ B. To recursively apply ren to M, we

must thus extend the renaming ρ : Ren Γ ∆ with the newly bound variable. For this,

we need an auxiliary function bindRen such that bindRen ρ : Ren (Γ ++c [A]c) (∆ ++c

[A]c). This new renaming will act like ρ for variables in ∆, and map the new variable

of type A to the corresponding new variable in Γ ++c [A]c.

bindRen : ∀ {Γ ∆ Θ} → Ren Γ ∆ → Ren (Γ ++c Θ) (∆ ++c Θ)

bindRen ρ (el (↙ i) q) = ↙v (ρ (el i q))

bindRen ρ (el (↘ i) q) = el (↘ i) q

The bindRen given here has a slightly generalised type, where instead of binding just

a single variable of type A, we could bind a whole context Θ of new variables. The first

case of bindRen is for old variables from ∆, where we apply ρ to get a variable in Γ, and

then use ↙v to embed that variable into Γ ++c Θ. The second case is for new variables

from Θ, which embed straight into Γ ++c Θ.

29

Chapter 2. Mechanisation of simple types

Meanwhile, a substitution from Γ to ∆ is an inhabitant of Sub Γ ∆, as defined

below. This definition is identical to the definition of Ren, except that it gives us terms

in Γ rather than variables.

Sub : (Γ ∆ : Ctx) → Set

Sub Γ ∆ = ∀ {A} → ∆ ∋ A → Γ ⊢ A

The sub function below gives the action of a substitution. Similarly to renaming,

we want to preserve the structure of the term, except now variables in the original term

are replaced by terms in the new context.

sub : ∀ {Γ ∆ A} → Sub Γ ∆ → ∆ ⊢ A → Γ ⊢ A

sub ρ (var x) = ρ x

sub ρ (app M N) = app (sub ρ M) (sub ρ N)

sub ρ (lam M) = lam (sub (bindSub ρ) M)

Given that this time, ρ is a substitution rather than a renaming, ρ x is a term, and

is sufficient in the var case. The app case again deals with the subterms recursively and

then recombines them with app. In the lam case, we again have a mismatch if we want

to apply sub recursively to the subterm M with an extra free variable. We have ρ : Sub

Γ ∆ but need a substitution of type Sub (Γ ++c [A]c) (∆ ++c [A]c), so we introduce

the auxiliary definition bindSub.

bindSub : ∀ {Γ ∆ Θ} → Sub Γ ∆ → Sub (Γ ++c Θ) (∆ ++c Θ)

bindSub ρ (el (↙ i) q) = ↙t (ρ (el i q))

bindSub ρ (el (↘ i) q) = var (el (↘ i) q)

For the old variables in the first case, we have ρ to turn them into terms in Γ.

Turning a term in Γ into a term in Γ ++c Θ requires a form of weakening we have not

yet proved, so I write ↙t in analogy with ↙v, and prove it below. In the second case,

we want to substitute the new variable by the term referring to this new variable in Γ

++c Θ.

The final piece to define substitution is to define the function that weakens a term

by some newly bound variables ∆. For this, we use the action of renaming, which we

30

Chapter 2. Mechanisation of simple types

have fully defined already, and in particular rename each variable in the term from a

variable in Γ to a variable in Γ ++c ∆.

↙t : ∀ {Γ ∆ A} → Γ ⊢ A → Γ ++c ∆ ⊢ A

↙t = ren ↙v

With this, the action of substitution is defined, and depends on the action of re-

naming.

2.3.3 Syntactic kits

As observed by Benton et al. [2012], McBride [2005], the statements of simultaneous

renaming and simultaneous substitution are very similar, with substitution being the

generalisation that allows replacement of variables by terms rather than just other

variables. Following McBride [2005], I will introduce a type family Env of environments,

and redefine Ren and Sub as environments of variables and terms, respectively.

Env : (K : Ctx → Ty → Set) (Γ ∆ : Ctx) → Set

Env K Γ ∆ = ∀ {A} → ∆ ∋ A → K Γ A

Ren = Env _∋_

Sub = Env _⊢_

The processes I described for constructing proofs of the admissibility of renaming

and substitution were also similar. Indeed, when we line up the resulting functions, ren

and sub, and their auxiliaries, bindRen and bindSub, we notice only three key differences:

• In the first cases of bindRen and bindSub, we do ↙v and ↙t, respectively, based

on whether we are weakening a variable or a term.

• In the second case of bindSub, we do an extra wrapping of the new variable by

var, so as to make it a term to go in the substitution.

• In the var case of ren, we have var (ρ x) rather than just ρ x, because the renaming

ρ gives us a variable rather than a term.

31

Chapter 2. Mechanisation of simple types

We may abstract over these three differences using the record Kit. As in Env, we

think of K as being either _∋_ or _⊢_. The fields of Kit are given in the same order

as the points of difference above. Wherever the difference was presence or absence of

var, we will be able to fill that field with either var or the identity function id.

record Kit (K : Ctx → Ty → Set) : Set where

constructor kit

field

↙k : ∀ {Γ ∆ A} → K Γ A → K (Γ ++c ∆) A

vr : ∀ {Γ A} → Γ ∋ A → K Γ A

tm : ∀ {Γ A} → K Γ A → Γ ⊢ A

The field ↙k can be seen as a property of the judgement form K, saying that it

supports a form of weakening. We use vr when adding a newly bound variable to an

environment, and use tm when we do a lookup from an environment and want to get

a term out. Given a Kit K, we can write the syntactic traversal function trav and its

auxiliary bindEnv, in the model of ren, sub, and their auxiliaries.

trav : ∀ {Γ ∆ A} → Env K Γ ∆ → ∆ ⊢ A → Γ ⊢ A

trav ρ (var x) = tm (ρ x)

trav ρ (app M N) = app (trav ρ M) (trav ρ N)

trav ρ (lam M) = lam (trav (bindEnv ρ) M)

bindEnv : ∀ {Γ ∆ Θ} → Env K Γ ∆ → Env K (Γ ++c Θ) (∆ ++c Θ)

bindEnv ρ (el (↙ i) q) = ↙k (ρ (el i q))

bindEnv ρ (el (↘ i) q) = vr (el (↘ i) q)

Concrete kits can be given for variables and terms either by inspecting ren and

sub or by following the types. Notice that the kit for terms requires the admissibility

of renaming so as to achieve weakening of a substitution by newly bound variables.

Fortunately, this can be the ren defined below in terms of trav, so we can keep trav as

the only syntactic traversal we have to write.

32

Chapter 2. Mechanisation of simple types

∋-kit : Kit _∋_

∋-kit = kit ↙v id var

ren = trav ∋-kit

⊢-kit : Kit _⊢_

⊢-kit = kit (ren ↙v) var id

sub = trav ⊢-kit

2.4 Generic semantics

The traversal trav from the last section is generic in the sense that V, the type of entries

in an environment, can be instantiated to many different things. However, in practice

we only use ∋ and ⊢, giving us renaming and substitution, respectively. This is because

trav only targets terms, and does so by keeping term constructors intact and replacing

only the variables by things from the environment. This makes substitution the most

general possible traversal.

If we want to capture a broader range of traversals, including not just syntactic but

also semantic operations, we must be able to target things other than terms, and act

in an interesting way on term constructors. Allais et al. [2017] show how to do this

generalisation of trav to a function sem with the following type, where C is the type

family we are targeting. In this section, I discuss the assumptions needed to implement

such a function.

sem : ∀ {Γ ∆ A} → Env V Γ ∆ → ∆ ⊢ A → C Γ A

Following the implementation of trav, we see that C will need to support a semantic

counterpart of each syntactic form (var, app, and lam). With syntactic kits, we already

asked for the field tm to interpret V-values as terms. We rename tm to JvarK to reflect

its role in the semantic traversal sem. Now, we will also ask for fields to replace the

right-hand side applications of the other term constructors. For application, we can

stick with the obvious thing: we should be able to combine a semantic function and its

semantic argument to get the semantic result.

JvarK : ∀ {Γ A} → V Γ A → C Γ A

JappK : ∀ {Γ A B} → C Γ (A ‘→ B) → C Γ A → C Γ B

33

Chapter 2. Mechanisation of simple types

However, we want to treat binding constructs specially, particularly because there

are semantics with no notion of binding. We instead provide a function from values

to computations that works in any extension of the current context. Keeping ↙k as

before, we get the following semantic replacement for Kit.

record Semantics (V C : Ctx → Ty → Set) : Set where

constructor kit

field

↙k : ∀ {Γ ∆ A} → V Γ A → V (Γ ++c ∆) A

JvarK : ∀ {Γ A} → V Γ A → C Γ A

JappK : ∀ {Γ A B} → C Γ (A ‘→ B) → C Γ A → C Γ B

JlamK : ∀ {Γ A B} →

(∀ {∆} → V (Γ ++c ∆) A → C (Γ ++c ∆) B) → C Γ (A ‘→ B)

With the aim of abstracting away from explicit contexts, bringing us closer to natural

deduction, we can use some new notation to rephrase these requirements. We will work

in Ctx → Set rather than Set. One of the basic connectives in this setting is the

pointwise arrow _→̇_, which acts in Ctx → Set like the non-dependent arrow does

in Set. Another basic component is the ∀[_] notation, which embeds Ctx → Set into

Set by using an implicit Π-type to quantify over all contexts. Finally, at this stage, I

introduce a modality ⃝ encapsulating the pattern of considering arbitrary extensions

of a context. To facilitate working in this point-free setting, I give infix versions of the

families V and C (respectively _V⊨_ and _C⊨_). The principal use of these aliases is

to fill the right argument with a type (occurring explicitly), and leave the left argument

as _, i.e., a context given through the point-free machinery.

⃝ : (Ctx → Set) → (Ctx → Set)

⃝ T Γ = ∀ {∆} → T (Γ ++c ∆)

record Semantics (V C : Ctx → Ty → Set) : Set where

constructor kit

infix 20 _V⊨_ _C⊨_; private _V⊨_ = V; _C⊨_ = C

34

Chapter 2. Mechanisation of simple types

field

↙k : ∀ {A} → ∀[_V⊨ A →̇ ⃝ (_V⊨ A)]

JvarK : ∀ {A} → ∀[_V⊨ A →̇ _C⊨ A]

JappK : ∀ {A B} → ∀[_C⊨ (A ‘→ B) →̇ _C⊨ A →̇ _C⊨ B]

JlamK : ∀ {A B} → ∀[⃝ (_V⊨ A →̇ _C⊨ B) →̇ _C⊨ (A ‘→ B)]

To illustrate this definition, I will discuss a syntactic traversal — renaming — and

a semantic traversal — a standard Set semantics.

For the renaming semantics, as with the renaming kit, we specify that environments

hold variables (_∋_) and show that variables satisfy the required form of weakening

(↙v). Meanwhile, whereas all syntactic kits target terms (_⊢_), with a semantic

traversal we must specify the target. The fields JvarK and JappK follow straightforwardly,

with variables embedding into terms and a pair of terms of the right types giving an

application term in the same context, via the relevant constructors. For the JlamK case,

we are given b : ⃝ (_∋ A →̇ _⊢ B) Γ , and after producing a lam, are left needing a

term in Γ ++c [A]c ⊢ B. That the type of b is wrapped in ⃝ gives us the ability to

use b in the extended context Γ ++c [A]c. In particular, we point at the new variable

to yield the desired term in the same context.

RenSem : Semantics _∋_ _⊢_

RenSem .↙k v = ↙v v

RenSem .JvarK = var

RenSem .JappK = app

RenSem .JlamK b = lam (b (↘v herev))

ren = sem RenSem

To produce a Set semantics, we shift from targeting terms to targeting the interpre-

tation of terms. In particular, J Γ ⊢ A K is the type of functions from the interpretation

of Γ to the interpretation of A. The interpretation of a type is defined as usual, by

recursion on the structure of the type. The interpretation of a context is the interpre-

tation for each of its types. We still have environments storing variables, which delays

35

Chapter 2. Mechanisation of simple types

the interpretation of variables to the JvarK case and allows newly bound variables to be

referred to directly as variables, rather than fetching them up-front from an environ-

ment of interpretations. In the JappK case, we have m : J Γ KCtx → (J A KTy → J B KTy)

and n : J Γ KCtx → J A KTy, and combine them in the usual way by distributing the

interpretation of the context γ : J Γ KCtx. The JlamK case involves the same placement

of the new variable into the environment as in RenSem. Finally, we get the function set

from terms to their interpretations by passing in the identity ∋-environment id.

J_KTy : Ty → Set

J ι KTy = N

J A ‘→ B KTy = J A KTy → J B KTy

J_KCtx : Ctx → Set

J Γ KCtx = Liftn J_KTy (Γ .ty-ctx)

J_⊢_K : Ctx → Ty → Set

J Γ ⊢ A K = J Γ KCtx → J A KTy

SetSem : Semantics _∋_ J_⊢_K

SetSem .↙k v = ↙v v

SetSem .JvarK (el i refl) γ = γ .get i

SetSem .JappK m n γ = (m γ) (n γ)

SetSem .JlamK b γ x = b (↘v herev) (γ ++n [x]n)

set : ∀ {Γ A} → Γ ⊢ A → J Γ ⊢ A K

set = sem SetSem id

The definition of Semantics above essentially enforces that the term being traversed

and the result of the traversal share the same binding structure. Concretely, lam is the

only case where we can bind new variables, and at that point we must do exactly one

binding. This is fine for renaming and substitution, which preserve the binding struc-

ture, and also for a standard denotational semantics, which is sufficiently abstracted

from binding. However, if we want to do other syntactic translations — for example,

converting from a syntax with n-ary functions to a syntax with only unary Curried func-

tions — it would be useful to allow more choices when going under a binder. To this

36

Chapter 2. Mechanisation of simple types

end, I replace the one-step binding modality ⃝ by the all-possible-renamings modality

□. □ T Γ states that T holds not only at Γ, but also at any context Γ+ containing Γ

(including Γ ++c ∆ for any ∆).

□ : (Ctx → Set) → (Ctx → Set)

□ T Γ = ∀ {Γ+} → Ren Γ+ Γ → T Γ+

As well as the flexibility in binding structure, the □ modality allows us to use the

somewhat more well behaved and standard relation of renaming, rather than strict

context extension. The resulting definition of Semantics is as follows, and is simply

a version of the previous definition where ⃝ has been replaced by □. It will become

apparent when we implement the traversal sem why the first field also changes to include

a □.

record Semantics (V C : Ctx → Ty → Set) : Set where

infix 20 _V⊨_ _C⊨_; private _V⊨_ = V; _C⊨_ = C

field

ren^V : ∀ {A} → ∀[_V⊨ A →̇ □ (_V⊨ A)]

JvarK : ∀ {A} → ∀[_V⊨ A →̇ _C⊨ A]

JappK : ∀ {A B} → ∀[_C⊨ (A ‘→ B) →̇ _C⊨ A →̇ _C⊨ B]

JlamK : ∀ {A B} → ∀[□ (_V⊨ A →̇ _C⊨ B) →̇ _C⊨ (A ‘→ B)]

Writing a □-based semantics is very similar to writing a ⃝-based semantics, so I will

only give one further example. I generalise the renaming example to derive a semantic

traversal from any syntactic traversal. We need a slightly modified definition of Kit to

provide renaming of V-values, rather than just extension.

record Kit (V : Ctx → Ty → Set) : Set where

constructor kit

infix 20 _V⊨_; private _V⊨_ = V

field

ren^V : ∀ {A} → ∀[_V⊨ A →̇ □ (_V⊨ A)]

vr : ∀ {A} → ∀[_∋ A →̇ _V⊨ A]

37

Chapter 2. Mechanisation of simple types

tm : ∀ {A} → ∀[_V⊨ A →̇ _⊢ A]

open Kit

The interesting feature of the corresponding Semantics is that we now pass b the

renaming ↙v, projecting the original context Γ out of the lam-extended context Γ ++c

[A]c.

kit→sem : ∀ {V} → Kit V → Semantics V _⊢_

kit→sem K .ren^V = K .ren^V

kit→sem K .JvarK = K .tm

kit→sem K .JappK = app

kit→sem K .JlamK b = lam (b ↙v (K .vr (↘v herev)))

With Semantics fixed, I also give the corresponding implementation of sem. Like

trav from section 2.3.3, we need a bindEnv function, but I have updated this to deal

with renamings and the □-operator, and also to fit better with concepts important for

generic syntax (as in section 2.5). bindEnv now takes the old environment ρ : [V] Γ

⇒e ∆, a renaming r : Ren Γ+ Γ, and an environment σ in the renamed context Γ+

targeting the context extension ∆r. In the lam case of sem, the JlamK field gives us

exactly the renaming to pass to bindEnv, while the extension environment σ is made as

a singleton environment containing just the A-value v.

sem : ∀ {Γ ∆ A} → Env V Γ ∆ → ∆ ⊢ A → Γ C⊨ A

sem ρ (var x) = JvarK (ρ x)

sem ρ (app M N) = JappK (sem ρ M) (sem ρ N)

sem ρ (lam M) = JlamK λ r v →

sem (bindEnv ρ r (λ { (el i refl) → v })) M

bindEnv : ∀ {∆ ∆r} →

∀[[V]_⇒e ∆ →̇ □ ([V]_⇒e ∆r →̇ [V]_⇒e (∆ ++c ∆r))]

bindEnv ρ r σ (el (↙ i) q) = ren^V (ρ (el i q)) r

bindEnv ρ r σ (el (↘ i) q) = σ (el i q)

38

Chapter 2. Mechanisation of simple types

2.5 Generic syntax

We have seen in previous sections a method for defining well typed terms, providing them

with the basic operations of renaming and substitution, and defining type-preserving

semantic traversals over those terms. However, the Agda code we have seen only deals

with one specific kind of terms — simply typed λ-calculus with a base type and function

types. The aim of this section is to write some code to which we can pass a description

or signature of a syntax and have it produce all of the same machinery.

The description of a syntax will closely resemble the logical rules Gentzen gave for

natural deduction systems NJ and NK, but we give them a revised interpretation. Where

Gentzen intended his rules to be applied schematically, and hypothetical proofs to be

handled via discharge of hypotheses, we will take the rules formally to produce a system

with explicit contexts and a variable rule. However, knowing that this resulting system

came from such a description means that we can derive variable-handling features, such

as substitution, in a generic way.

I will present a scheme based on the work of Allais et al. [2021] such that figure 2.2

is interpreted as the type system we studied in the previous sections (simply typed

λ-calculus with a base type and function types). Remember that, while these look like

inference rules, I am treating them entirely formally, collected together into a syntax

description. The information presented in figure 2.2 is essentially all of the information

needed for the type system sans any details about variables. In particular, notice:

• Contexts, in particular the context of a rule’s conclusion, which is shared in all

premises in the resulting type system, are elided. The only part of any context I

record is the newly bound variables in premises, such as the variable bound by a

λ-abstraction.

• There is no explicit variable rule. It is understood that any x : A in the context

of the resulting type system can be used to yield a term with type A.

Such a scheme commits us to a certain approach to variable binding and context

management, but does not commit us to anything about the meaning of types. For

example, we do not declare that app and lam are “elimination” and “introduction”

39

Chapter 2. Mechanisation of simple types

⊢ A → B ⊢ A app
⊢ B

A ⊢ B lam
⊢ A → B

Figure 2.2: An example syntax description

Premises ps, qs ::= ∆ ⊢ A | | ps qs

Rule r, s ::=
ps

⊢ A

Figure 2.3: The grammar of typing rules

forms for the function type former. This limits our generic results to matters of syntax

and variables, but provides a platform upon which a future semantic scheme could rest.

A syntax description is a set of fully instantiated rules. In our running example,

this set contains a app-rule and a lam-rule for each pair of types A and B.

To construct the syntax given by a description, we keep var as before, and have

another constructor con for all of the logical rules. con takes a rule r with premises

∆1 ⊢ A1; . . . ; ∆n ⊢ An and conclusion A, and the remainder of its type is as follows.

con r : ∀Γ. (Γ,∆1 ⊢ A1)× · · · × (Γ,∆n ⊢ An) → Γ ⊢ A

Note that, in this type, ⊢ is the type family of terms we are inductively constructing,

as opposed to the description syntax found in the premises.

In our generic version of Semantics, we keep the ren^V and JvarK fields as before,

and replace JappK and JlamK by a JconK field as follows.

JconK r : ∀
[
□
(

V
=⇒ ∆1 →̇

C
A1

)
×̇ · · · ×̇□

(
V

=⇒ ∆n →̇ C
An

)
→̇ C

A
]

I use
C
A for the Agda notation _C⊨ A, while V

=⇒ ∆ stands for the type family of

environments λ Γ → Env V Γ ∆. Environments appear in this definition simply as a

way to write a product of V-values — one value for each element of ∆. We could make

a special case of premises which do not bind any variables, as did Allais et al. [2021],

eliding the □ and empty environment, but I choose not to for uniformity and simplicity

40

Chapter 2. Mechanisation of simple types

of presentation.

To generate the expressions involving ellipses, I give an interpretation of the formal

rule descriptions. The interpretation is parametrised on some ,_J_⊢_K : Ctx → Open-

Fam, where, in , ∆ J Γ ⊢ A K, the context ∆ stands for the newly bound variables of a

premise, Γ is the context as it was below the rule’s horizontal line, and A is the type

of the premise. In the con constructor for terms, the parameter is Γ,∆ ⊢ A, and in the

JconK field for semantics, the parameter is □
(

V
=⇒ ∆ →̇ C

A
)
Γ.

A single premise with newly bound variables is interpreted by shuffling the parts

into the right place, while multiple premises are interpreted as pointwise products of

the individual premises (giving the ellipses above).

J_Kp : Premises → Ctx → Set

J ⟨ ∆ ‘⊢ A ⟩ Kp Γ = , ∆ J Γ ⊢ A K

J ‘1̇ Kp = 1̇

J p ‘×̇ q Kp = J p Kp ×̇ J q Kp

A rule, with all its parameters instantiated, targets a specific type A′, which we

check to match the desired type A. Finally, a whole System comprises a set L of rule

labels, and rs : L → Rule. The interpretation of these data is to pick a rule label l,

and then take the interpretation of the rule rs l. For the sake of defining terms as a

least fixed point, it is important to note that the interpretation of a syntax description

is strictly positive in the parameter ,_J_⊢_K.

J_Kr : Rule → OpenFam

J ps ‘_ A′ Kr Γ A = A′ ≡ A × J ps Kp Γ

J_Ks : System → OpenFam

J L ▷ rs Ks Γ A = Σ[l ∈ L] J rs l Kr Γ A

The interpretation of a system description as a single layer of syntax is functorial,

supporting the map-s function when the parameter ,_J_⊢_K is given as an extra argu-

ment named X or Y (which are both fixed as parameters of map-s, together with Γ and

∆).

41

Chapter 2. Mechanisation of simple types

map-s : (s : System) →

(∀ {Θ A} → X Θ Γ A → Y Θ ∆ A) →

(∀ {A} → J s Ks X Γ A → J s Ks Y ∆ A)

The implementation of map-s is straightforward, so I do not list it here. We preserve

the shape of the syntactic layer, applying the function to each X we find (wherever the

description contains ⟨ ∆ ‘⊢ A ⟩).

This map-s will be used in the generic syntax version of sem to recursively apply sem

to all subterms. However, a major distinction between generic syntax and the specific

syntax of previous sections is that the subterms found by map-s are not recognised by

Agda’s termination checker as structurally smaller than the original term. Therefore, a

naïvely written sem will fail Agda’s termination check.

To make sem pass the termination check, we have four major options:

1. Assert sem to be terminating, bypassing the termination check.

2. Use Agda’s sized types [Abel, 2010] to remember that the subterms are smaller.

3. Avoid sized types, and index terms over some user-defined type (for example,

natural numbers or ordinal notations) which is structurally smaller at subterms.

4. Inline a new, instantiated version of map-s wherever it is used.

Each of these approaches has drawbacks. Approach 1 is clearly unsafe, in the sense

that the fundamental lemma sem is not being completely checked for type-correctness.

Approach 2 is also unsafe, because Agda’s sized type implementation is known to make

the system inconsistent [Abel, 2015]. Meanwhile, approach 3 is safe, but entails a lot

of manually extracted and supplied extra arguments, which I think would distract from

the presentation and make the resulting code harder to use. Finally, approach 4 is safe,

but limits code reuse (both of the function map-s itself and any lemmas we may prove

about it). I choose to follow Allais et al. [2021] in using sized types, justified by the

idea that Agda may eventually have a sound implementation of sized types, at which

point I would want my code to be as easy to update for that new version of Agda as

42

Chapter 2. Mechanisation of simple types

possible. Fiore and Szamozvancev [2022] use approach 4, and in fact have only one use

of (their equivalent of) map-s in their development.

Using sized types, my type family of System-generic terms is as below. Scope is a

name for the transformation of an OpenFam into a Ctx → OpenFam which appends the

extra context to the existing context before applying the original OpenFam (in this case,

producing something like Γ,∆ ⊢ A from ⊢). The Agda builtin ↑ produces a bigger size

from an existing size sz, giving us here that the size of a term is 1 bigger than the size of

all of its immediate subterms. Agda’s elaborator and termination checker have special

support for sizes, so we do not have to worry much about them from this point on.

data [_,_]_⊢_ (d : System) : Size → OpenFam where

‘var : ∀ {sz} → ∀[_∋_ →̇ [d , (↑ sz)]_⊢_]

‘con : ∀ {sz} → ∀[J d Ks (Scope ([d , sz]_⊢_)) →̇ [d , (↑ sz)]_⊢_]

Corresponding to the generic ‘con constructor for terms, we have a generic field

JconK in the updated Semantics record. In place of where one might expect Scope C, we

instead have Kripke V C, with Kripke defined below. The form of Kripke follows from

the shape we saw in the type of the JlamK field we saw in section 2.4, where I use an

environment targeting ∆ as a way to say “a value for each type in ∆”.

Kripke : (V C : OpenFam) → Ctx → OpenFam

Kripke V C ∆ Γ A = □ ([V]_⇒e ∆ →̇ [C]_⊨ A) Γ

record Semantics (d : System) (V C : OpenFam) : Set where

infix 20 _V⊨_ _C⊨_; private _V⊨_ = V; _C⊨_ = C

field

ren^V : ∀ {A} → ∀[_V⊨ A →̇ □ (_V⊨ A)]

JvarK : ∀[V →̇ C]

JconK : ∀[J d Ks (Kripke V C) →̇ C]

Finally, we get a generic semantic traversal as follows. The function bindEnv is

unchanged from section 2.4, as it never mentions the syntax. The type of the traversal

43

Chapter 2. Mechanisation of simple types

sem is also basically unchanged — we just need to account for arbitrary term sizes (sz),

which will get smaller when recursing on subterms. I have chosen, as did Allais et al.

[2021], to define sem mutually with a function body, which is like a counterpart to sem

dealing with newly bound variables. Note that the mutual recursion is not essential —

for example, body could simply be inlined. The ‘var case of sem is as before. The ‘con

case, if viewed appropriately, is a direct generalisation of the lam case from earlier. We

recursively apply sem to all immediate subterms contained in M (as found by map-s),

with an environment updated to reflect the newly bound variables in each premise of

the rule that was applied.

sem : ∀ {Γ ∆} → [V] Γ ⇒e ∆ → ∀ {sz A} →

[d , sz] ∆ ⊢ A → Γ C⊨ A

body : ∀ {Γ ∆} → [V] Γ ⇒e ∆ → ∀ {sz Θ A} →

Scope [d , sz]_⊢_ Θ ∆ A → Kripke V C Θ Γ A

sem ρ (‘var v) = JvarK (ρ v)

sem ρ (‘con M) = JconK (map-s d (body ρ) M)

body ρ M r σ = sem (bindEnv ρ r σ) M

2.6 Related work

There is a vast literature on formalisations of syntaxes with binding, which I cannot

possibly do justice to in a reasonably sized thesis chapter. Instead, I limit myself to

comparisons of the Allais et al. [2021] method I follow in this thesis to just its closest

related work.

2.6.1 Autosubst

Schäfer et al. [2015] present the system Autosubst, which provides various tools for work-

ing with syntaxes with binding in the Coq proof assistant. Autosubst is based on similar

ideas to those Allais et al. use: De Bruijn-indexed terms with a distinguished variable

rule and notion of binding, acted upon by simultaneous renaming and substitution.

44

Chapter 2. Mechanisation of simple types

The simplest differences are essentially matters of choosing the encoding that best

fits the proof assistant being used. Coq users tend to prefer using unindexed types

and propositions indexed over them — in this case, a type of unscoped and untyped

terms plus a “well typed” predicate — whereas Agda users prefer to work with only

well formed data (well scoped and well typed terms). The latter approach more readily

allows us to show generically that substitution preserves scoping and typing, but the

former approach, conversely, allows for bespoke proofs of such facts. For example, one

theorem of Schäfer et al. [2015] is type preservation for CCω, a dependent type system

we cannot express using the machinery of Allais et al. [2021]. In principle, one could

use Allais et al.’s machinery as the basis of a similar bespoke proof, but as far as I am

aware, this has not been tried.

Another main difference is that Autosubst is presented to the user largely as a black-

box implementation of substitution and related lemmas, in contrast to Allais et al.’s

work exposing the Semantics bundle to the user, and having substitution be just one

instance. Allais et al. [2017] and Allais et al. [2021] provide many examples of traversals

over syntax using the same generic environment management as used by substitution.

However, the focus on substitution in Autosubst has meant that reasoning about sub-

stitutions has been given more developed support. For example, the library provides

a tactic autosubst which automates many equational proofs involving substitutions

based on the σ-calculus of Abadi et al. [1991].

An interesting feature of Autosubst is heterogeneous substitution. The motivation

for heterogeneous substitution is to handle systems like system F, where types and terms

are syntactically distinct, but both feature binding and require a substitution operation.

Furthermore, binding and substitution of types also affects the syntax of terms, thanks

to Λ terms. Allais et al. provide no direct equivalent to heterogeneous substitution,

and it is unclear how well their work can handle polymorphic calculi.

Kaiser et al. [2018] propose some modifications to Autosubst which, as far as I can

tell, have not yet been incorporated, although all of the case studies in the paper are

mechanised in Coq. In the paper, they adapt and extend the work of Allais et al. on

generic semantic traversals to cover a variant of system F. They use the term multivari-

45

Chapter 2. Mechanisation of simple types

ate traversal for the generalisation of heterogeneous substitution to semantic traversals.

It appears that this work could be followed through to produce syntax descriptions cov-

ering polymorphic calculi, which would provide a route for this work to be incorporated

into the Autosubst library.

2.6.2 Second order abstract syntax

Marcelo Fiore and various collaborators have a long line of work aiming for a categorical

account of variable-binding [Fiore et al., 1999, Fiore, 2008, Fiore and Hamana, 2013,

Fiore and Hur, 2010, Fiore and Mahmoud, 2010]. A recent, particularly relevant paper

from this line of work is that of Fiore and Szamozvancev [2022], which mechanises some

of this work to obtain a framework similar in scope to the work of Allais et al. [2021].

However, there are several differences between the resulting mechanised frameworks, of

methodological, mathematical, and technical nature.

Though Allais et al. [2021] did not state their results in categorical terms, it is still

useful to infer what the category-theoretic statement would have been, and compare

it to the statement actually given by Fiore et al. [1999] and Fiore and Szamozvancev

[2022]. When we do this, we see that while Fiore et al. deal with the category of

contexts under renaming, and presheaves on that category. This means that every

model must be shown to respect renaming before touching the framework of Fiore and

Szamozvancev. Meanwhile, Allais et al. make use of the interplay between the discrete

category of contexts and the category of contexts under renaming. For example, the

models (Semantics) of Allais et al. [2021] require only that the family of semantic values V

be shown to respect renaming, while the fact that the result family C respects renaming

follows as a corollary of the traversal function trav. Fiore and Szamozvancev make

no distinction between V and C, essentially only having C, but requiring it to respect

renaming before getting the morphism to that model from the initial model (the syntax).

In particular, this interplay allows us to derive renaming for terms in the way we saw in

section 2.5 — by making V the family of variables, which trivially respects renaming.

Perhaps the relative complexity of the categorical account of the work of Allais et al.

[2021] is why the authors decided not to state it in such terms. However, it is also likely

46

Chapter 2. Mechanisation of simple types

that Allais et al. developed their work in quite a different style to how Fiore et al.

did, despite arriving at similar theories. The work of Allais et al. [2021] is designed

first and foremost to facilitate programming language mechanisations, and thus pays

a lot of attention to syntax and traversals of it, making sure that the results compute

well in Agda. On the other hand, Fiore et al. started from theoretical investigations

about the category of models of theories with binding, and only applied their work

to the mechanisation of programming languages in the much later work of Fiore and

Szamozvancev [2022].

In terms of the underlying theory, both works extend multi-sorted universal alge-

brawith variable-binding. However, the two extensions are subtly different. Universal

algebra already has a notion of variable, which supports renaming and substitution,

and which allows a given term to be evaluated when the free variables of that term are

assigned semantic values. Allais et al. reuse this notion of variable, and allow binding of

such variables in terms. On the other hand, Fiore and Szamozvancev recast the existing

variables as metavariables, and introduce a new notion of (bindable) variables separately

into the syntax. The resulting metavariables can then stand for arbitrary open terms,

and thus each one remembers its context and requires an explicit substitution whenever

it is used.

Fiore and Szamozvancev use metavariables to form descriptions of relations over

terms, like an equational theory over the simply typed λ-calculus. Terms have, as

well as their context of variables, a context of metavariables, and terms can contain

a metavariable wherever they could contain a subterm. There is then an operation

of metavariable substitution, which substitutes terms in the place of metavariables.

Metavariable substitution is used to instantiate the rules of described relations/theories.

In contrast, Allais et al. make do with the variables of the metalanguage (i.e. Agda

variables).

More concrete work by McLaughlin et al. [2018], building on the approach to se-

mantics of Allais et al. [2017] and section 2.4, also deals with syntactic contexts into

which terms can be substituted (as part of developing notions of contextual equiva-

lence). However, this work makes use of several different notions of syntactic context,

47

Chapter 2. Mechanisation of simple types

rather than just the one given naturally by metavariables in the framework of Fiore and

Szamozvancev. This suggests that more research is needed about the various roles of

metavariables before any particular approach is standardised.

Technologically, Fiore and Szamozvancev provide an external domain-specific lan-

guage for syntax descriptions. From such a description, a Python program generates

some boilerplate Agda code providing the types, the algebraic signature, the well typed

terms, and a proof that the terms are the initial model. Using code generation like

this resembles parts of the Autosubst plugin, as opposed to the purely internal, generic

programming-based solution given by Allais et al. and in this thesis.

Fiore and Szamozvancev [2022, p. 19] avoid sized types by defining their equivalent

of the functorial mapping map-s specialised to sem, with these two functions being

mutually recursive. This is a standard solution, where code reuse is traded away in

favour of satisfying the termination checker and avoiding sized types.

Despite all of these differences, I chose to base the work of this thesis on that of

Allais et al. [2021] for largely circumstantial reasons. I only became aware of the work

of Fiore and Szamozvancev [2022] when it was published, by which time I had already

completed the bulk of the work presented in this thesis. Also, one of the authors of the

former paper is my PhD supervisor, and the other authors too were working nearby, so

it was easy to discuss their work quickly and informally. I think it is clear what it would

mean to adapt the later work of this thesis to a framework in the style of Fiore and

Szamozvancev rather than Allais et al., but it may not be obvious how usage restrictions

(for ordinary variables) and metavariables should interact.

2.6.3 Substitution-based semantics

A feature shared by the frameworks of Allais et al. [2021] and Fiore et al. [1999] (and

the rest of the work described in section 2.6.2) is that they are both often concerned

about how renamings act upon semantics/models. The basic currency of both systems

is presheaves on the category of contexts under renaming, and when the user wants to

produce a semantics, they must show that the desired semantics forms such a presheaf —

amounting to showing that the relevant type family respects renamings (in the direction

48

Chapter 2. Mechanisation of simple types

that may introduce new, unused variables to the context).

In contrast, the work of Hirschowitz et al. [2022] is based around the category of

contexts under substitution or, more precisely, the morphisms given by semantic envi-

ronments of whatever semantics is being defined. The focus on substitution makes this

work simpler than renaming-based frameworks, because we get to avoid talking about

renaming, whereas we always ultimately need to talk about substitution. However,

what is a gain for internal simplicity is a loss for usability. For the syntax, starting

from substitution means that the framework provides no help in proving the admissi-

bility of substitution, because the syntax is not considered a model until we can show

that it admits substitution. Similarly, for semantic models, we have to prove that each

model we consider respects semantic substitution, which is a stronger requirement than

respecting renaming.

Additionally, Hirschowitz et al. [2022] gain further simplicity of definitions by not

keeping track of contexts. For example, untyped substitutions on a set (as opposed to

scope-indexed family) X are functions from N to X. Similarly, the simply typed families

introduced in section 6 of the aforementioned paper are indexed on their type, but not

their context. Ignoring scopes/contexts lets one talk about monads (as in De Bruijn

monads) rather than a more complex notion like relative monads [Altenkirch et al.,

2015]. However, it also means losing potentially useful and important information.

2.6.4 Nominal techniques

There have been essentially two approaches when it comes to incorporating nominal

techniques into proof assistants. The first is to develop a new foundational theory and

develop a new proof assistant on top of it. The second is to take an existing proof

assistant and provide a library, possibly based on unsafe features.

The best-developed nominal foundational theory at the time of writing is Fraenkel-

Mostowski (FM) set theory, as introduced by Gabbay [2001] and Gabbay and Pitts

[2002]. Gabbay’s thesis presents FM set theory, and then uses it as the basis for a proof

assistant Isabelle/FM and programming language FreshML. FM is a variant of ZF set

theory containing an infinite set A of atoms or names, and the equivariance axiom,

49

Chapter 2. Mechanisation of simple types

stating that every FM proposition is invariant under consistent permutation of A. In

this setting, one can define the quantifier Na. ϕ, read as introducing a new or fresh

name a to be used in the proposition ϕ. As a material set theory, FM is unusual in that

it refutes the axiom of choice. In terms of applications to proof assistants, this means

that FM is incompatible with much existing Isabelle-based work, including anything

using the Hilbert ε-operator, which is used liberally in Isabelle/HOL. For example, if

the syntax of a programming language is formalised in FM, then there is no formal

connection to the kind of foundations in which interesting denotational semantics have

likely been formalised.

Related to nominal set theories is the recent work of Pitts [2023] about theories

of locally nameless sets. This behaves quite similarly to nominal theories, in that free

variables have names, and renaming is given by primitive operations. In fact, Pitts

[2023] shows that every locally nameless set is a nominal set.

The other approach — implementing a nominal library within an existing proof

assistant — is exemplified by the Nominal Isabelle library of Urban [2008]. This work is

based around having a countably infinite discrete type name (which could be a type of

natural numbers or strings, for example) which is treated abstractly, and then defining

liftings of permutations on name to permutations on any other types involving names.

Because these liftings are defined explicitly within Isabelle/HOL, the Nominal Isabelle

setup amounts to an explicit model of a nominal logic within Isabelle/HOL. This

setup resembles what Allais et al. [2021] did within Agda, and similarly what I do

later in this thesis — creating a library within an existing proof assistant. The main

downside, compared to working internally to a nominal set theory, is that the external

constructions of Nominal Isabelle are more complicated, and involve keeping track of

more properties that do not come as part of the theory the proof assistant understands.

There has also been an effort to replicate the Nominal Isabelle work in Coq by

Aydemir et al. [2006]. However, this work appears to have been abandoned before

publication, and the approach is unclear from the work-in-progress paper. Nominal

libraries have also been made in general-purpose programming languages, like in Haskell

with the nom package [Gabbay, 2020].

50

Chapter 2. Mechanisation of simple types

From a broader perspective, I claim that nominal techniques solve a subtly different

problem to that solved by the likes of Autosubst, the work of Fiore, and the tech-

niques discussed in detail in this chapter. The names found in nominal techniques are

more general than (names of) variables in formal systems. This means that nominal

techniques have been applicable to problems outside standard programming language

theory, such as in the representation of graphs and in topology [Gabbay and Gabbay,

2017]. However, in certain ways, this is arguably not a good fit for type systems. In

a basic nominal formalisation of a syntax with binding, there is no real distinction be-

tween the context of a term and the collection of that term’s free variables. This, for

example, leaves no natural place to put the types of variables, except as either a partial

function from the set of names to types, or from the computed set of free variables to

types. The discrepancy becomes even more apparent in substructural systems, as we

see later, where we want tight control over the context, as opposed to the scope.

2.6.5 Logical frameworks

Logical frameworks based on higher order abstract syntax are another approach which

has been used to mechanise the metatheory of logics and programming languages.

Primary among logical frameworks in recent study is the Edinburgh Logical Frame-

work [Harper et al., 1993], also known as LF. The underlying theory of LF is a de-

pendent type theory λΠ featuring weak function spaces. Weak function spaces differs

from the usual strong function spaces in that functions in a weak function space cannot

inspect their arguments — only place them whole in their result. Therefore, variables of

the logical framework can be used as if they were the variables of the object language.

Below I give two example constructors of a type family tm. These declarations are

similar to the rule descriptions I gave in figure 2.2 for their lack of explicit contexts. In

this example, Π is the type former for dependent weak function spaces, with → being

the non-dependent specialisation of Π. The quoted arrow ‘→ is a type former of the

object language, as in the previous examples in this chapter.

51

Chapter 2. Mechanisation of simple types

lam : ΠA,B. (tmA → tmB) → tm (A ‘→B)

app : ΠA,B. tm (A ‘→B) → tmA → tmB

Like several other approaches I have described in this chapter, logical frameworks

aim to manage variables, variable binding, and contexts in a generic way, giving the

user only the choice of what logical rules they want to add to a basic calculus. In fact,

logical frameworks go further than any other approach I have described, never giving

the user reified access to the context of object language terms, and giving immediate

access to (single) substitution simply as application of weak functions. LF also natively

supports more complex calculi than the simply typed λ-calculus — for example allowing

us to implement and reason about System F.

The main drawback of logical frameworks is that making one requires making a

new proof assistant, typically with no compatibility with existing proof assistants and

their libraries of useful mathematical definitions and proofs. Particularly, if you want to

consider calculi not (conveniently) expressible in λΠ (as I do, with substructural calculi),

then you need to make a new logical framework which is probably also incompatible with

existing logical frameworks. As such, no single logical framework acts as a convenient

and natural foundation upon which to build a broad range of mathematics including

substructural logics and their metatheory.

52

Chapter 3

Linearity and modality

The techniques of chapter 2 were developed to handle idealised core calculi, like the

simply typed λ-calculus and its many variants. Such core calculi can be seen as simplified

models of real programming languages and/or their intermediate representations. A

potential programming language feature — required for many desired semantics but

only relatively recently appearing in programming languages — that is not handled by

the techniques of chapter 2 is restrictions on how variables can be used. In the simple

type systems covered in chapter 2, the only restriction on the use of a variable is that it

is used as an expression of the appropriate type. However, we could also consider having

somehow “guarded” subexpressions in which some variables bound outside cannot occur,

or systems in which the use of a variable in one part of an expression precludes its use

in another part of that expression (the variable having been “used up”). I will introduce

and motivate some such systems in this chapter, and argue that they are impossible to

capture directly in the framework presented in section 2.5.

Languages and systems implementing features inspired by linear logic include

Rust [Matsakis and Klock, 2014, Rust team, 2023], Granule [Orchard et al., 2019],

ATS [Xi, 2004, Zhu and Xi, 2005], an experimental Haskell extension [Bernardy et al.,

2017], and various implementations of session types [Hüttel et al., 2016]. Additionally,

forms of linearity have been used in theoretical work, for example to bound compu-

tational complexity [Girard et al., 1992, Hofmann, 2003] or to write programs which

support incremental updates to computations [Ehrhard, 2018, Ehrhard and Regnier,

53

Chapter 3. Linearity and modality

2003]. As for modality, Ivašković et al. [2020] show that common data-flow analyses

for imperative languages can be recast as modal type systems, though such analyses

have generally been developed in an ad hoc fashion. Such a recasting may be useful to

understand the metatheoretic properties of programs passing such static analyses. More

user-facing implementations of modal type systems include the system for stack allo-

cation in OCaml [Dolan and White, 2022] and the approach to programmer-annotated

erasure found in Agda and Idris [Atkey, 2018, Brady, 2021].

In this chapter, I look at two standard type-theoretic features that motivate consid-

ering calculi going beyond simple type theories as delineated in chapter 2 or equivalently

by Allais et al. [2021]. The first feature is a □-modality — specifically, the □-modality

of intuitionistic S4, which I discuss in section 3.1. The second feature is linearity, which

I discuss in section 3.2. In particular, I discuss possible syntaxes for each, with a mind

to being able to apply the techniques described in chapter 2. After having introduced

these topics, I finish this chapter with a survey of prior work on representing such type

theories in proof assistants in section 3.3.

3.1 Intuitionistic S4 modal logic

Modal logics, and in particular their modalities, are usually presented in philosophical

and mathematical logic in an axiomatic style. For example, the common modal logic S4

may be presented by taking a presentation of classical logic, adding a unary □ (“box”)

operator to the formulas, keeping the logical rules as-are, and adding all of the axioms

and rules listed in figure 3.1. Note that, unlike elsewhere in this thesis, the empty

context in the necessitation rule N is a proper restriction: While the axioms hold in

any context, thanks to weakening, and ordinary logical rules hold in any context, the

necessitation rule only holds in the empty context. We may apply weakening to the

conclusion of N to embed such a derivation into a larger derivation, but we may not use

hypotheses from the outside in such a subderivation.

In this thesis, I am working with intuitionistic logics, so I start with a base of

intuitionistic logic, and study intuitionistic S4 (IS4). The axiomatic presentation can be

54

Chapter 3. Linearity and modality

⊢ A N
⊢ □A

K
⊢ □(A → B) → (□A → □B)

T
⊢ □A → A

4
⊢ □A → □(□A)

Figure 3.1: The axioms and rules required in a traditional presentation of S4

introduced on top of various presentations of intuitionistic/classical logic — including

natural deduction, sequent calculi, Hilbert systems, and abstractly taking the set of

intuitionistic/classical tautologies. For concreteness and rigour, I will assume a natural

deduction system NJ allowing for explicit weakening.

The axiomatic presentation is convenient for talking about semantics, with differ-

ent choices of axioms corresponding fairly directly to natural restrictions on models.

However, the syntax is quite poorly behaved, at least for programming language appli-

cations. As mentioned earlier, the necessitation rule makes requirements of its context,

which makes it incompatible with the methods discussed in chapter 2. Essentially, we

are required to make necessitation a special case in renaming, substitution, and all

the other traversals. Additionally, axioms require us to modify the notion of canonical

form [Prawitz, 1965, p. 79], and redo any proofs that rely on all closed terms of function

type being λ-abstractions.

The methodology I use to produce a nicer syntax is that of Pfenning and Davies

[1999]: capturing the desired modality in the judgemental structure of the syntax. To

start, note the following two facts about a “promotion” rule similar to one mentioned

by Benton et al. [1993].

Proposition 3.1.1. When Γ = B1, . . . , Bn, let □Γ abbreviate □B1, . . . ,□Bn. Then,

in NJ + N + K + 4, the following principle is admissible.

□Γ ⊢ A Promotion
□Γ ⊢ □A

Proof. By induction on n. When n = 0, Promotion becomes just the necessitation rule

N. For n = |Γ| + 1, we have the following derivation, where 4′ and K′ abbreviate the

obvious combinations of 4 and K, respectively, with →-E. I silently apply weakening

55

Chapter 3. Linearity and modality

throughout the derivation for the sake of concision.

□Γ,□B ⊢ A
→-I

□Γ ⊢ □B → A IH
□Γ ⊢ □(□B → A)

Var
□B ⊢ □B 4′

□B ⊢ □□B
K′

□Γ,□B ⊢ □A

Proposition 3.1.2. In NJ + Promotion + T, we can derive the original axioms and

rule of S4: N, K, T, and 4

Proof. The rule N and axiom T are immediate. For axioms K and 4, we have the

following derivations, where T′ abbreviates the obvious combination of T and →-E.

T′

□(A → B) ⊢ A → B
T′

□A ⊢ A
→-E

□(A → B),□A ⊢ B
Promotion

□(A → B),□A ⊢ □B
→-I

□(A → B) ⊢ □A → □B
→-I

⊢ □(A → B) → □A → □B

Var
□A ⊢ □A Promotion
□A ⊢ □□A →-I

⊢ □A → □□A

Propositions 3.1.1 and 3.1.2 suggest that a Promotion-like rule to introduce the

□ operator and a T-like rule to eliminate the □ operator may be a possible approach

to capture S4 in a natural deduction style. However, we do not want to add such

a rule to our system because it is not stable under substitution. For example, let

σ : □A ∧□B ⊢
=⇒ □A,□B be the substitution whose two components are given by left

projection and right projection, respectively. The substitution principle says that we

should be able to turn any derivation of □A,□B ⊢ □C into a derivation of □A∧□B ⊢

□C. However, if we concluded □A,□B ⊢ □C by Promotion, then it becomes unclear

how to conclude □A∧□B ⊢ □C. In particular, Promotion does not apply because the

formula □A ∧□B is headed by ∧, rather than □.

Instead of constraining the types of all of the items in the context, the solution given

by Pfenning and Davies [1999] is to diversify the shapes of contexts, and constrain those

56

Chapter 3. Linearity and modality

Γv ⊢ A true
□-I

Γ ⊢ □A true

Γ ⊢ □A true Γ, A valid ⊢ B true
□-E

Γ ⊢ B true

Γ ∋ (A valid)
vVar

Γ ⊢ A true

Figure 3.2: The new rules of the Pfenning and Davies presentation of IS4.

shapes when giving our necessitation rule. In this case, we are interested in hypotheses

being □-like, so we introduce a judgement form A valid , contrasting with the judgement

we had previously written just A, but will now write A true. We construct the system

so that A valid is equivalent to □A true. Because the choice of valid or true is part of

the structure of the context, rather than being part of the type, we are able to define

substitution between contexts in a way that treats valid and true entries differently —

restricting substitution so that it is compatible with an adapted version of Promotion.

Let us take the natural deduction presentation of the simply typed λ-calculus given

in section 2.2. Where that system has sequents of the form A1, . . . , An ⊢ B, we instead

now write A1 true, . . . , An true ⊢ B true. We may also have hypothetical occurrences

of A valid , but all logical rules will target judgements of the form A true. Hypotheses

of the form A valid arise from the elimination rule for the □ operator, □-E. The only

special thing about valid hypotheses is that, once they are bound, they are preserved

by the □-I rule, which is our recasting of Promotion as the introduction rule for □.

Otherwise, like true hypotheses, an A valid hypothesis can be used to obtain A true,

via the vVar rule, as justified by axiom 4.

The three new rules are listed in figure 3.2. Let Γv be the context Γ but with all

true hypotheses removed, leaving only valid hypotheses. Because I am working with a

De Bruijn index-style presentation, weakening needs to be admissible. Therefore, the

□-I rule needs to remove its true hypotheses, rather than only applying in a context in

which there are no true hypotheses.

Whereas Pfenning and Davies [1999] prove single substitution for both true and

valid hypotheses (as well as possible hypotheses, and for possible judgements, in their

system dealing with a possibility modality ♢) separately, I build on the simultaneous

substitution procedure given in section 2.3.3 to give a unified simultaneous substitution

procedure. Recall that the basic definition was that of ⊨-environment, defined in the

57

Chapter 3. Linearity and modality

intuitionistic case by Γ
⊨

=⇒ ∆ := ΠA. ∆ ∋ A → Γ ⊨ A. Essentially the same formula

deals with true hypotheses, but for valid hypotheses, we need to think of something new.

We want to be able to instantiate ⊨ to ⊢ so as to derive substitution, but Γ ⊢ A valid

is not a valid sequent in our system. Instead, I consider Γ ⊢ □A true, and in particular

the canonical way of deriving such a sequent: the □-I rule. □-I says that we can get

Γ ⊢ □A true from Γv ⊢ A true. I take the form of latter sequent to replace Γ ⊨ A valid ,

giving the following definition.

Definition 3.1.3. A (modal) ⊨-environment from Γ to ∆ is given as follows.

Γ
⊨

=⇒ ∆ := ΠA. (∆ ∋ A true → Γ ⊨ A)× (∆ ∋ A valid → Γv ⊨ A)

With this definition, I reproduce the kit-based machinery from section 2.3.3. How-

ever, I make crucial use of the stability under renaming property — rather than stability

under context extension — to deal with not just context extensions, but also discarding

of true hypotheses by the □-I rule. To state this property, I firstly need to be precise

about what a renaming is.

Definition 3.1.4. The set of variables in context Γ of type A, notated Γ ∋ A, is the

disjoint union of the sets Γ ∋ A true and Γ ∋ A valid — respectively, the true variables

and the valid variables in Γ of type A.

The set of renamings from Γ to ∆ is Γ
∋

=⇒ ∆.

Definition 3.1.4 allows us to state a unified variable rule: For each x : Γ ∋ A, we

have a corresponding term x : Γ ⊢ A true. However, with the new definition of both

environments and variables, we must check that they interact in the desired way.

Lemma 3.1.5 (lookup). If ⊨ respects renaming (i.e., we have a function ren⊨ : Γ
∋

=⇒

∆ → ∆ ⊨ A → Γ ⊨ A for each Γ, ∆, and A), then from an environment ρ : Γ
⊨

=⇒ ∆

and a variable x : ∆ ∋ A, we get a value ρ(x) : Γ ⊨ A.

Proof. I proceed by cases on whether x is a true or valid variable. In the true case, the

result is straightforward. In the valid case, definition 3.1.3 gives us a value in Γv ⊨ A.

58

Chapter 3. Linearity and modality

We need a renaming of type Γ
⊨

=⇒ Γv to get the desired value in Γ ⊨ A. The renaming

is the one that, conceptually, discards the true hypotheses.

We then need to prove that environments are preserved by everything we do to

contexts in a derivation. One thing we do, like in the simply typed case, is to bind

new variables, and this is handled by lemma 3.1.6. The other thing, which is new for

modal logic, is to discard the true hypotheses, as in the □-I rule, which is handled by

lemma 3.1.7.

Lemma 3.1.6 (bindEnv). If we have vr : Γ ∋ A → Γ ⊨ A for all Γ and A, and

ren⊨ : Γ
∋

=⇒ ∆ → ∆ ⊨ A → Γ ⊨ A for all Γ, ∆, and A, then from an environment

ρ : Γ
⊨

=⇒ ∆ we can get an environment of type Γ,Θ
⊨

=⇒ ∆,Θ for all Γ, ∆, and Θ.

Proof. I consider separately the part of the environment we are constructing that deals

with true hypotheses and the part that deals with valid hypotheses. These cases corre-

spond to the two factors in the expression in definition 3.1.3.

The case for true hypotheses is essentially the same as in section 2.3.3. We take

cases on whether the x : ∆,Θ ∋ A true is in ∆ or Θ. In the ∆ case, we apply ρ and

then rename via ren⊨ using the obvious renaming of type Γ,Θ
∋

=⇒ Γ. In the Θ case, we

embed our z : Θ ∋ A true as ↘ z : Γ,Θ ∋ A true, and use vr to get the required value.

The case for valid hypotheses is similar. We take the same cases, with the ∆ case

differing only in which part of ρ we need to use (the valid part, rather than the true

part). In the Θ case, we have z : Θ ∋ A valid . The v operation keeps all valid

hypotheses, so we have zv : Θv ∋ A valid . Using the fact that (Γ,Θ)v = Γv,Θv, we

have ↘ zv : (Γ,Θ)v ∋ A valid , and we use vr to get the required value.

Lemma 3.1.7. From an environment ρ : Γ
⊨

=⇒ ∆, we can get an environment ρv :

Γv
⊨

=⇒ ∆v.

Proof. Suppose x : ∆v ∋ A. Because ∆v contains only and all of the valid hypotheses

from ∆, we actually have x′ : ∆ ∋ A valid . Applying the second part of ρ on x′ gives

us a value in Γv ⊨ A. We actually wanted a value in (Γv)v ⊨ A, but v is idempotent, so

we already have this.

59

Chapter 3. Linearity and modality

Then, we use all of the previous features to prove the key theorem.

Theorem 3.1.8 (trav). For any notion of value ⊨ which is stable under renaming,

admits variables (via some vr as in lemma 3.1.6), and embeds into terms (via some

tm : Γ ⊨ A → Γ ⊢ A true for all Γ and A), an environment ρ : Γ
⊨

=⇒ ∆ and a term

M : ∆ ⊢ A true yield a term M [ρ] : Γ ⊢ A true.

Proof. I proceed by induction on the term M . Here I consider only variables and the

two rules governing the □ connective. It is easy to adapt this procedure to any of the

types from simply typed λ-calculus.

I consider variables being given by the unified variable rule proposed in the paragraph

before lemma 3.1.5. Given this, from a variable x : ∆ ∋ A, lemma 3.1.5 gives us a value

ρ(x) : Γ ⊨ A, which tm turns into a term of the desired form.

If the term was made from the □-I rule, we use that rule to produce the resulting

term, and need to get from a term M : ∆v ⊢ A true to a term in Γv ⊢ A true. It is

enough to use the induction hypothesis, updating the environment using lemma 3.1.7.

If the term was made from the □-E rule, we again use the same rule to construct

the output, but have to get from a term M : ∆ ⊢ □A true to a term in Γ ⊢ □A true,

and from a term N : ∆, A valid ⊢ B true to a term in Γ, A valid ⊢ B true. The former

follows from a straightforward use of the induction hypothesis, while the latter needs

lemma 3.1.6 before applying the induction hypothesis.

To get our desired corollaries of simultaneous renaming and substitution, we first

have to show that variables respect renaming. In the pure intuitionistic case of chapter 2,

this was trivial because renamings were precisely functions between sets of variables.

In the modal case, we have to be careful about the distinction between true and valid

hypotheses, and how the context is restricted in the valid case.

Lemma 3.1.9 (variables respect renaming). Given a renaming ρ : Γ
∋

=⇒ ∆ and a

variable x : ∆ ∋ A, we get a variable in Γ ∋ A.

Proof. Note that we cannot use lemma 3.1.5 with ⊨ instantiated to ∋ because it would

circularly require that variables respect renaming. However, the procedure in this case

is similar to that of lemma 3.1.5.

60

Chapter 3. Linearity and modality

We take cases on whether x is true or valid, and the result in the true case comes

immediately by applying the true part of ρ. For x : ∆ ∋ A valid , ρ gives us a variable

in Γv ∋ A. This variable must be valid (Γv ∋ A valid), and from there it is easy to get

a variable in the larger context Γ.

Corollary 3.1.10 (renaming). Given a renaming ρ : Γ
∋

=⇒ ∆ and a term M : ∆ ⊢

A true, we get a term in Γ ⊢ A true.

Proof. We use theorem 3.1.8, with ⊨ being ∋, vr being the identity function, tm being

the unified variable rule, and renaming of ∋ being given by lemma 3.1.9.

Corollary 3.1.11 (substitution). Given a substitution ρ : Γ
⊢

=⇒ ∆ and a term M :

∆ ⊢ A true, we get a term in Γ ⊢ A true.

Proof. We use theorem 3.1.8, with ⊨ being − ⊢ − true, vr being the unified variable

rule, tm being the identity function, and renaming being given by corollary 3.1.10.

With these basic syntactic lemmas proved in a manner largely following the proofs

of chapter 2, it is plausible that this approach could be extended to handle generic

semantics and generic syntax, following sections 2.4 and 2.5, respectively. However, I

hold off from developing this until phrasing it more generally in chapter 6.

3.2 Intuitionistic Linear Logic

Where modal logics can be seen as additions to an underlying classical or intuitionistic

logic, linear logic is a much more radical change. Formally, many modal logics, includ-

ing (I)S4, are conservative extensions of the underlying classical or intuitionistic logic,

meaning that statements not mentioning the modal operators □ and ♢ are provable in

modal logic if and only if they are provable in the underlying non-modal logic. In linear

logic, however, we a priori severely restrict provability of basic formulae, and then use

modalities to recover the strength of classical or intuitionistic logic.

In this thesis, I consider intuitionistic linear logic (ILL). ILL can be understood as a

logic of resources. Whereas in classical logic we read a proposition A to implicitly mean

“A is true”, we may read a proposition A of linear logic to implicitly mean “I have an

61

Chapter 3. Linearity and modality

A”. A sequent A ⊢ B can then be understood as saying “if I have an A, I can give it

up so as to have a B”, and the corresponding implication A⊸ B can be understood as

saying “I have a mechanism for having a B if I have and am willing to give up an A”.

The resource interpretation of intuitionistic linear logic is often explained by anal-

ogy with a vending machine. Suppose we have a vending machine which takes pound

coins and sells bottles of water for £1 and chocolate bars for £2. We can repre-

sent the latter two facts by the judgements £1 ⊢ water and £1,£1 ⊢ bar, respec-

tively. Notice that having two £1 coins is very different from having just one £1

coin. We can represent having compound objects using ⊗-products (tensor-products),

so that having a £1 coin together with a chocolate bar is represented as £1 ⊗ bar,

and the mechanism for getting a chocolate bar from the vending machine is described

by (£1⊗ £1) ⊸ bar. The entire protocol of one transaction with the vending ma-

chine is represented as (£1⊸ water)&((£1⊗ £1)⊸ bar), where the &-product (with-

product) represents giving the user a choice of which of the two conjuncts to have. Fi-

nally, that we can do multiple transactions with the vending machine is represented as

!((£1⊸ water) & ((£1⊗ £1)⊸ bar)), where the !-modality (read “bang” or “of course”)

represents having an arbitrary number of copies of its argument.

Such reasoning is useful in computer science because it allows us to distinguish what

we had before some event with what we got after it. In both intuitionistic and classical

logic, if we had a £1 coin and a way to turn a £1 coin into a bottle of water, we’d be

able to have both the £1 coin and the bottle of water at once. Instead, linear logic

acknowledges that the £1 coin was spent, so at one time we had just the £1 coin, and

at a later time we had just the bottle of water. In real applications, such reasoning is

useful in, for example, dealing with mutable state [Makwana and Krishnaswami, 2019]

— in which, when we mutate the state, we forget the old value and have only the new

value — and producing a session type system [Wadler, 2012] — in which the protocol

progresses as messages are sent.

In this section, I will carefully introduce intuitionistic linear logic so as to make the

intuitive readings more precise.

62

Chapter 3. Linearity and modality

3.2.1 The multiplicative-additive fragment

The multiplicative-additive fragment of linear logic (MALL) is the fragment where all

hypotheses are linear (must be used exactly once). I will extend MALL with the expo-

nential modality in section 3.2.2. MALL is unable to embed intuitionistic or classical

logic, as MALL is unable to reflect any of the discarding or duplication that can be

done in proofs using weakening or contraction.

In short, the syntax of intuitionistic MALL can be described as intuitionistic logic

with the structural rules of weakening and contraction removed. However, without the

presence of weakening and contraction, we have to be more careful about the rules

we state, so as not to accidentally admit weakening and contraction. The lack of these

structural rules also allows us to observe a new phenomenon: the distinction (at the level

of provability) between additive and multiplicative formulations of existing connectives

(in particular, the conjunction connective).

I present MALL in figure 3.3 in a sequent calculus style, as it was presented by

Girard [1987].

To encode what it means to use a hypothesis exactly once, we first need to decide

what counts as a use. The simplest case is that the identity sequent counts as a single

use of its sole hypothesis, and conversely does not count as a use of any other hypotheses.

For sequential proofs, created by the Cut rule, if we have a proof of A using Γ, and a

proof of B using ∆ and A, then we have a proof of B transitively using ∆ and Γ. The

exchange rule Exch says that use is invariant under permutation.

For the logical connectives, we have genuine choices as to what it means to use them.

Two cases — disjunction (⊕) and (linear) implication (⊸) — are somewhat intuitive

from intuitionistic logic. A canonical proof of a disjunction is a tag and a proof of one

of the two disjuncts. This suggests that a proof of a disjunction only uses the same

hypotheses as the proof of the disjunct we actually choose, with the other disjunct being

irrelevant. Correspondingly, when we use a disjunction hypothesis, we will only actually

use one of the cases, so each branch should use the same hypotheses. For implication,

use is sequential like with the Cut rule, and its left rule is more or less the only choice

that allows use of the surrounding hypotheses.

63

Chapter 3. Linearity and modality

A,B,C ::= X | I | A⊗B | A⊸ B | 0 | A⊕B | ⊤ | A&B

Γ,∆,Θ ::= · | Γ, A

Id
A ⊢ A

Γ ⊢ A ∆, A ⊢ B
Cut

Γ,∆ ⊢ B

Γ, B,A,∆ ⊢ C
Exch

Γ, A,B,∆ ⊢ C

Γ ⊢ C
I-L

Γ, I ⊢ C
I-R

· ⊢ I
Γ, A,B ⊢ C

⊗-L
Γ, A⊗B ⊢ C

Γ ⊢ A ∆ ⊢ B ⊗-R
Γ,∆ ⊢ A⊗B

Γ ⊢ A ∆, B ⊢ C
⊸-L

Γ,∆, A⊸ B ⊢ C

Γ, A ⊢ B
⊸-R

Γ ⊢ A⊸ B

0-L
Γ, 0 ⊢ C (no 0-R)

Γ, A ⊢ C Γ, B ⊢ C
⊕-L

Γ, A⊕B ⊢ C

Γ ⊢ Ai ⊕-Ri
Γ ⊢ A0 ⊕A1

(no ⊤-L)

⊤-R
Γ ⊢ ⊤

Γ, Ai ⊢ C
&-Li

Γ, A0 &A1 ⊢ C

Γ ⊢ A Γ ⊢ B
&-R

Γ ⊢ A&B

Figure 3.3: Multiplicative-additive fragment of linear logic

For conjunction, there are two choices: Either the conjuncts together use all of the

hypotheses, or each of the conjuncts individually uses all of the hypotheses. The former

choice gives us the tensor-product (⊗), and the latter choice gives us the with-product

(&). These products are equivalent up to provability in logics with weakening and

contraction, but distinct in linear logic.

Implication (⊸) and the tensor-product (⊗, I) comprise the multiplicative fragment,

while disjunction (⊕, 0) and the with-product (&, ⊤) comprise the additive fragment.

Categorically, the additive fragment corresponds to products and coproducts, while the

multiplicative fragment corresponds to multicategorical tensor products and closure.

3.2.2 The !-modality

Figure 3.4 shows the rules we can add to MALL to get the full sequent calculus for intu-

itionistic linear logic (ILL). In ILL, !A is defined to be a proposition whose occurrences

as antecedents can be deleted (Weakening) and duplicated (Contraction), from which

64

Chapter 3. Linearity and modality

A,B,C ::= · · · | !A

!Γ ⊢ A Promotion
!Γ ⊢ !A

Γ, A ⊢ B
Dereliction

Γ, !A ⊢ B

Γ ⊢ B Weakening
Γ, !A ⊢ B

Γ, !A, !A ⊢ B
Contraction

Γ, !A ⊢ B

Figure 3.4: The sequent calculus rules for the !-modality

we can extract A (Dereliction), and which we can form from a conclusion A only when

all antecedents are of the form !X for some proposition X (Promotion). In short, !A

can be seen as an intuitionistic version of A, supporting all of the structural rules of LJ,

and only being able to be formed when it does not depend on anything linear.

The Dereliction rule is comparable to the T axiom we saw in section 3.1. The

Promotion rule is exactly like the Promotion rule we saw in section 3.1, and for

the same reasons we want to avoid having such a rule in a natural deduction system

for intuitionistic linear logic. Note that Promotion is not problematic in the sequent

calculus, at least insofar as it maintains Cut-elimination.

Additional to the problems with Promotion in a natural deduction system, defining

the !-modality as in figure 3.4 has the odd feature that, unlike all of the other connectives

of ILL, ! is not characterised by a universal property. This can be seen by the fact that

taking the rules for ! and replacing each occurrence of ! by a fresh connective !′ produces

a logically distinct connective. One cannot produce any derivation of !′A ⊢ !A because

Promotion does not apply when there are antecedents not of the form !X. This lack

of characterisation also holds of the rule and axioms we first gave to the □-modality in

figure 3.1, and essentially any presentation that does not incorporate the modality into

the judgemental structure of the calculus.

A noteworthy solution to the substitution problem of Promotion is given by Benton

et al. [1993]. The solution they give is compatible with the form of sequents introduced

above, but works purely in terms of right-rules like standard natural deduction calculi.

I give their rules for the !-modality in figure 3.5. The Weakening and Contraction

65

Chapter 3. Linearity and modality

∆1 ⊢ !A1 · · · ∆n ⊢ !An !A1, . . . , !An ⊢ B
Promotion

∆1, . . . ,∆n ⊢ !B

Γ ⊢ !A Dereliction
Γ ⊢ A

Γ ⊢ !A ∆ ⊢ B Weakening
Γ,∆ ⊢ B

Γ ⊢ !A ∆, !A, !A ⊢ B
Contraction

Γ,∆ ⊢ B

Figure 3.5: The Benton et al. [1993] rules for the !-modality

rules are reminiscent of pattern-matching elimination principles, allowing us to form

an inhabitant of the type of interest (!A) and then continue producing the originally

desired result (B) in an updated context. However, somewhat unusually, we can choose

which of the two “pattern-matching” principles to use, depending on whether we want to

delete or duplicate the value of type !A. Another elimination-like rule is Dereliction,

which straightforwardly lets us derive A from !A similarly to the corresponding sequent

calculus rule from figure 3.4, but on the right.

The Benton et al. Promotion rule is more formally complex, but can be understood

as follows. We notice that the problem with the Promotion rule of fig:bang-seq when

added to a natural deduction system is that it restricts the types of assumptions in the

concluding sequent. In other words, the sequent calculus Promotion rule is acting like

both a right-rule and, problematically, a left-rule, to some degree. Acting on the context

in a natural deduction system risks making substitution inadmissible, as happens in

this case. Instead, Benton et al. paraphrase this restriction on the context as the

construction of a new context !A1, . . . , !An for the primary subderivation. Heuristically,

this new Promotion rule admits substitution because any substitution will pass into

the relevant premises deriving !A1 to !An. More abstractly, we can notice that the first

n premises essentially form an explicit substitution from ∆1, . . . ,∆n to !A1, . . . , !An, so

any further substitution applied to a Promotion-headed term is precomposed onto this

explicit substitution [Abadi et al., 1991].

The Benton et al. Promotion rule is a clever solution to the substitution problem

of (intuitionistic) linear logic, but the resulting system comes with its own problems.

If we were to write programs in a language directly implementing the Benton et al.

calculus, then the Promotion rule would be a pain point because it makes us rebind

66

Chapter 3. Linearity and modality

all of the !-typed variables we need to new variables. Additionally, we have to be

explicit everywhere about weakening and contraction, potentially making working with

!-typed variables much more fiddly than the corresponding variables would be in a

non-substructural programming language. These syntactic annoyances may be worked

around in a realistic implementation by some new elaboration procedures, but we would

prefer not to rely on such elaboration if there is an acceptable core calculus which more

closely matches the programs we want to write. Therefore, I investigate such a system,

Dual Intuitionistic Linear Logic, in the following subsection.

3.2.3 Dual Intuitionistic Linear Logic

Dual Intuitionistic Linear Logic (DILL) is a syntax for intuitionistic linear logic intro-

duced by Barber [1996]. Its key feature is splitting assumptions into linear assumptions

and intuitionistic assumptions — sometimes called the dual context approach. Intu-

itionistic assumptions behave like the variables of simply typed λ-calculus. In contrast,

the linear assumptions behave as in the linear calculus we saw in section 3.2. For ex-

ample, an intuitionistic assumption of A in an instance of the ⊗-introduction rule is

automatically copied to both premises. This contrasts with an assumption of !A in the

purely linear calculus, which must first be contracted into two assumptions, with one

going to each premise. Compared to the modal system we saw in section 3.1, linear

assumptions correspond to true assumptions, and intuitionistic assumptions correspond

to valid assumptions.

The new feature when dealing with linear logic, compared to modal logic, is that

linear and intuitionistic assumptions satisfy different structural rules. In our De Bruijn

index style, where every multi-premise rule does the maximal contraction and weakening

occurs in the leafwardmost possible position, this means that all of the rules have to

manage the substructurality of linear assumptions. To help manage linear assumptions,

I introduce three pieces of notation.

Definition 3.2.1. I write Γ int to state that context Γ contains only intuitionistic

assumptions, i.e., no linear assumptions.

67

Chapter 3. Linearity and modality

Definition 3.2.2. I write Γ+∆ to stand for a context combining Γ and ∆. Specifically,

the operation is only defined when Γ and ∆ contain the same intuitionistic assumptions,

and in that case the result contains the same intuitionistic assumptions. The linear

assumptions of the result are the disjoint union of the linear assumptions of each of Γ

and ∆.

Definition 3.2.3. I write Γ ∋ A, like in section 3.1, to stand for the set of variables of

type A we can get from Γ. Specifically, if Γ contains an assumption x : A int , then x

gives rise to an inhabitant of Γ ∋ A if and only if Γ int ; and if Γ contains an assumption

x : A lin, then x gives rise to an inhabitant of Γ ∋ A if and only if x is the only linear

assumption in Γ. These restrictions essentially encode the fact that we do not allow

linear variables to be discarded via the use of another variable.

Barber [1996] uses the notational convenience of dividing linear and intuitionistic

assumptions into two separate contexts, hence the name of the dual context approach.

I choose not to do this so as to draw out the connection with the approach of Pfenning

and Davies [1999], as well as the approach I will take in later chapters. I also think

that it is more instructive to treat the context as a single unified thing, so that we can

clearly see what operations on the context have to be preserved by environments (for

use in renaming, substitution, and other traversals).

I list the complete rules of DILL in figure 3.6. Given definitions 3.2.1 to 3.2.3,

the rules for multiplicative and additive connectives look not too dissimilar to those

in figure 3.3. However, their treatment of intuitionistic assumptions (contraction and

weakening automatically, as in non-substructural calculi) is new. Meanwhile, the rules

for the !-modality are the same as those for the □-modality given in figure 3.2, except

for the implicit structural rules applying to linear assumptions. For example, where the

□-I rule discards true assumptions, the !-I rule cannot discard linear assumptions, but

instead requires that there are no linear assumptions in the context when the rule is

applied, so that no linear assumptions can be used in the subproof.

I will not give a direct substitution procedure for DILL like the one I gave for the

modal system of section 3.1. Suffice to say, where environments for the modal calculus

had to be preserved by binding of variables and pruning of all true variables, environ-

68

Chapter 3. Linearity and modality

A,B,C ::= X | I | A⊗B | A⊸ B | 0 | A⊕B | ⊤ | A&B | !A
Γ,∆,Θ ::= · | Γ, A lin | Γ, A int

S ::= Γ ⊢ A lin

Γ ∋ A
Var

Γ ⊢ A lin

Γ ⊢ I lin ∆ ⊢ C lin
I-E

Γ +∆ ⊢ C lin

Γ int
I-I

Γ ⊢ I lin

Γ ⊢ A⊗B lin ∆, A lin, B lin ⊢ C lin
I-E

Γ +∆ ⊢ C lin

Γ ⊢ A lin ∆ ⊢ B lin ⊗-I
Γ +∆ ⊢ A⊗B lin

Γ ⊢ A⊸ B lin ∆ ⊢ A lin
⊸-E

Γ +∆ ⊢ B lin

Γ, A lin ⊢ B lin
⊸-I

Γ ⊢ A⊸ B lin

Γ ⊢ 0 lin
0-E

Γ +∆ ⊢ C lin

(no 0-I)
Γ ⊢ A⊕B lin ∆, A lin ⊢ C lin ∆, B lin ⊢ C lin

⊕-E
Γ +∆ ⊢ C lin

Γ ⊢ Ai lin ⊕-Ii
Γ ⊢ A0 ⊕A1 lin

(no ⊤-E) ⊤-I
Γ ⊢ ⊤ lin

Γ ⊢ A0 &A1 lin
&-Ei

Γ ⊢ Ai lin

Γ ⊢ A lin Γ ⊢ B lin
&-I

Γ ⊢ A&B lin

Γ ⊢ !A lin ∆, A int ⊢ !C lin
!-E

Γ +∆ ⊢ C lin

Γ ⊢ A lin Γ int
!-I

Γ ⊢ !A lin

Figure 3.6: Dual Intuitionistic Linear Logic

69

Chapter 3. Linearity and modality

ments for DILL have to be preserved by similar plus the operations of definitions 3.2.1

and 3.2.2. These definitions themselves are somewhat technical, and I do not believe

that delving into the further technicalities of how they interact with environments will

provide useful enough intuitions to justify including here. However, I will revisit the

idea of environments for linear calculi in a more general semiring-annotated setting in

chapter 5.

Finally, notice that the rules given in figure 3.6 characterise ! up to logical equiva-

lence. The main feature ensuring this property is that each logical rule contains exactly

one occurrence of a logical connective, meaning that each logical rule is only defining

that connective in that place. For the full characterisation result, we also require local

soundness and completeness of !, as discussed by Pfenning and Davies [1999] in the

modal setting.

3.3 Mechanisations and systematisations of substructural

logics

In this section, I give an overview of techniques which have been used in previous

work to mechanise linear logic in proof assistants. Naïve approaches often struggle to

represent concatenation of contexts in a way which is amenable to the way dependent

type theory-based proof assistants work. Problems even arise when working rigorously

on paper when trying to avoid an explicit exchange rule, such as how definition 3.2.2 is

not a precise definition of a binary operator on lists.

3.3.1 Typing with leftovers

Typing with leftovers, introduced by Allais [2018], is a technique developed to specify an

algorithm for linear type checking as a declarative type system. The idea is to consider

an input context, a term, and an output context, where the input context contains all

of the variables in scope, and the output context is the same minus any variables used

by the term. Type-checking of adjacent subterms of, for example, an application of

the ⊗-introduction rule, is done by threading the context through from the output of

70

Chapter 3. Linearity and modality

Γ,∆,Θ ::= · | Γ, 1x : A | Γ, 0x : A

S ::= Γ ⊢ M : A⊠∆

Figure 3.7: Typing with leftovers, context and sequent syntax

Var
Γ, 1x : A ⊢ x : A⊠ Γ, 0x : A

I-I
Γ ⊢ ∗ : I ⊠ Γ

Γ ⊢ M : I ⊠∆ ∆ ⊢ N : C ⊠Θ
I-E

Γ ⊢ let ∗ = M in N : C ⊠Θ

Γ ⊢ M : A⊠∆ ∆ ⊢ N : B ⊠Θ ⊗-I
Γ ⊢ (M,N) : A⊗B ⊠Θ

Γ ⊢ M : A⊗B ⊠∆ ∆, 1x : A, 1y : B ⊢ N : C ⊠Θ, 0x : A, 0y : B
⊗-E

Γ ⊢ let (x, y) = M in N : C ⊠Θ

Γ, 1x : A ⊢ M : B ⊠∆, 0x : A
⊸-I

Γ ⊢ λx. M : A⊸ B ⊠∆

Γ ⊢ M : A⊸ B ⊠∆ ∆ ⊢ N : A⊠Θ
⊸-E

Γ ⊢ M N : B ⊠Θ

Figure 3.8: Typing with leftovers, multiplicative fragment

the first term to the input of the second. Bound variables are introduced in the input

context of the term in which they are bound, and are expected to be absent in the

output context of that term.

Figures 3.7 and 3.8 give rules in the typing-with-leftovers style for the multiplicative

fragment of intuitionistic linear logic. Where Allais marks fresh and stale variables, I

use the notation I will use starting in chapter 4, labelling such variables with 1 and 0,

respectively. Intuitively, the number describes how many more times that variable is to

be used.

The original paper extends the logic covered to binary additives — & and ⊕ — with

rules that check that terms agree on output contexts, as seen in figure 3.9. However, it

is less clear how to handle nullary additives — ⊤ and 0 — as we would have 0 (rather

than 2) potential candidates for the output context. At some level, this problem is

unavoidable in a system modelling linearity checking because any checking strategy will

expose the ambiguity in sequents like 1x : A ⊢ (⟨⟩, ⟨⟩) : ⊤ ⊗ ⊤ of whether the variable

x was consumed in the left half or the right half. Such an example is also considered in

related work on proof search for linear logics, such as the work of Winikoff and Harland

71

Chapter 3. Linearity and modality

Γ ⊢ M : A⊠∆ Γ ⊢ N : B ⊠∆
&-I

Γ ⊢ {M,N} : A&B ⊠∆

Γ ⊢ M : A⊕B ⊠∆ ∆, 1x : A ⊢ N : C ⊠Θ, 0x : A ∆, 1y : B ⊢ O : C ⊠Θ, 0y : B
⊕-E

Γ ⊢ case M of {x. N ; y. O} : C ⊠Θ

Figure 3.9: Typing with leftovers, a selection of the additive rules

IVar
Γ, ωx : A ⊢ x : A⊠ Γ, ωx : A

0γ, 0δ, ωθ ⊢ M : A⊠ 0γ, 0δ, ωθ
!-I

0γ, 1δ, ωθ ⊢ [M] : !A⊠ 0γ, 1δ, ωθ

Γ ⊢ M : !A⊠∆ ∆, ωx : A ⊢ N : C ⊠Θ, ωx : A
!-E

Γ ⊢ let [x] = M in N : C ⊠Θ

Figure 3.10: Typing with leftovers, a possible way to capture !

[1994, p. 11] and Cervesato et al. [2000, p. 150]. It is not immediately clear whether the

different solutions proposed by these papers will apply to Allais’ and my settings, given

that they both act on a set of formulas restricted to facilitate proof search. The solutions

also add significant, seemingly somewhat ad hoc, structure to the syntax of sequents,

with no semantic justification (rather being justified by making their respective proof

search algorithms efficient).

The original paper also does not show how to capture the exponential modality !.

The solution given by both Winikoff and Harland [1994] and Cervesato et al. [2000] is, as

in DILL, to distinguish between linear variables and intuitionistic variables. This gives

rules like those of figure 3.10. The important invariant is that linear and intuitionistic

variables stay distinct, so any intuitionistic variable in the input context (annotated by

ω) must be intuitionistic in the output context.

However, this adaptation of the DILL style does not obviously generalise to semiring

annotations. Even for the multiplicative fragment, we seem to be working against the

direction of addition, instead using a subtraction operation whenever we use a variable.

An algebraic presentation of this fragment is given by Zalakain and Dardha [2021], in

terms of a partial functional cancellative addition operation. For exponentials, though,

72

Chapter 3. Linearity and modality

and particularly the !-introduction rule, what I have done seems ad-hoc, not based on

any pointwise algebraic operation.

Also, the unusual form of sequents can cause some problems when working with

a typing with leftovers system. For example, a traditional intuitionistic linear logic

sequent Γ ⊢ M : A corresponds to many different typing with leftovers sequents, in-

cluding:

• 1Γ ⊢ M : A⊠ 0Γ

• 1Γ, 1x : B ⊢ M : A⊠ 0Γ, 1x : B

• 1Γ, 0x : B ⊢ M : A⊠ 0Γ, 0x : B

Generally, any variable not used in the term can be added to both the input and the

output context with the same annotation. Many of these variations are likely to appear

in various typing derivations, depending on what terms surround a given subterm. In

particular, many different variations can appear for the same term in different subterms

of the same derivation, even when the scope of the two occurrences is the same. This

means that if we want to implement substitution, which involves putting a term into

an unknown surrounding, we have to navigate these different forms via the framing

property.

The unusual form of sequents also somewhat obscures any attempt to interpret the

terms of a typing-with-leftovers system. Though the ⊠ notation suggests a semantics

into symmetric monoidal closed categories where terms are morphisms from one iterated

tensor product (the input context) to another (the type and output context), the syntax

is incomplete for this semantics because we cannot produce anything interesting in the

output context.

Another piece of related work using a typing-with-leftovers style is that of Polakow

[2015]. There, Polakow encodes a linear embedded domain-specific language inside

Haskell using typeclass constraints.

3.3.2 Yalla

Laurent [2018] presents a collection of linear logics in a uniform style, and various proofs

73

Chapter 3. Linearity and modality

relating them. The logics share varying amounts of definitions and theorems — for ex-

ample, the main linear logic is parametrised on whether to include mix rules and whether

to restrict exchange to cyclic permutations, whereas systems like the Lambek calculus

(with no exchange) and polarised linear logic are defined separately from scratch.

The style used in Yalla is to realise sequents as lists of formulas. The active formula

tends to be forced to be the first formula in such a list, with an explicit exchange rule

being used to move such formulas into place. Laurent [2018] points out that using multi-

sets, as do some less formal presentations of linear logic, is insufficient at distinguishing

certain proofs involving repeated assumptions or conclusions. For example, we expect

there to be two distinct derivations of A⊗A ⊢ A⊗A (up to the appropriate equational

theory): the one that keeps the pair in the same order and the one that flips the order.

But if the ⊗-L rule unpacks the formula A⊗A into the multiset {A,A}, then we forget

the order of the input pair.

Despite making sure to distinguish distinct proofs, the Yalla library does not de-

fine any equational theories of proofs, so does not prove any results relying on these

distinctions. While the complication of defining an equational theory in the presence

of an exchange rule is probably largely inevitable, having the exchange rule introduces

redundancy such that many equivalent proofs are not equal as data structures. The

mechanisations presented in chapter 2 all sought to reduce this kind of redundancy for

intuitionistic logic, so that the only non-trivial equations in the equational theory are

β- and η-rules (i.e. computationally interesting rules). I will restore this property of the

representation in chapter 4.

The relevance of Yalla to the work in this thesis is limited by the fact that Yalla

is based entirely on sequent calculi, whereas I am considering only natural deduction

calculi.

3.3.3 Co-De-Bruijn syntax

McBride [2018] presents a mechanisation of the simply typed λ-calculus in what he

calls co-De-Bruijn style. He notes that syntax based on De Bruijn indices, as presented

in chapter 2, finds a canonical way to place contractions and weakenings by eagerly

74

Chapter 3. Linearity and modality

placing contractions wherever they could be needed (i.e., whenever a rule has multiple

premises) and leaving weakening as late as possible (i.e., at the variable rule and at

rules with no premises). Co-De-Bruijn syntax, by contrast, finds a canonical way to

place contractions and weakenings by doing the reverse: weakening as early as possible

(i.e., as soon as the variable is bound) and contracting only where necessary.

Such a scheme straightforwardly adapts to multiplicative linear logic by modifying

the data structures presented by McBride [2018] to disallow all contraction and weak-

ening, as presented by Rouvoet et al. [2020]. With the additive rules, however, we get

cases where variables appear multiple times syntactically in a term but are still con-

sidered linear by the type system, the simplest example being x : A ⊢ ⟨x, x⟩ : A & A.

Such rules are perhaps a new kind compared to what McBride considers, but it seems

likely that just copying the same context to all the premises would not be too hard to

accommodate. Meanwhile, we may consider implementing the !-modality as in DILL,

with intuitionistic variables handled using the regular co-De-Bruijn machinery from the

paper. In summary, the co-De-Bruijn approach is promising for capturing linearity, but

has not been thoroughly investigated.

The other relevant contribution from Rouvoet et al. [2020] is to recast the context-

splitting relations via connectives inspired by bunched logic [O’Hearn and Pym, 1999].

I adapt this method in section 4.3, but with a different notion of context-splitting.

3.3.4 Fitch-style modalities

An alternative to the approach of Pfenning and Davies [1999] to adapt modal logics (and

particularly IS4) to natural deduction is using Fitch-style calculi. Fitch-style calculi,

as codified and studied by Borghuis [1994], are distinguished by allowing for contexts

containing locks, written µ, with the variable rule being restricted so that only variables

not behind locks are immediately accessible.

Below I give the main rules of Fitch-style IK (intuitionistic logic K). Other normal

modal logics are obtained by strengthening the □-elimination rule to remove varying

numbers of locks. For example, we can add axiom T by allowing for 0 or 1 locks to be

removed, axiom 4 by allowing 1 or more locks to be removed, or both axioms together

75

Chapter 3. Linearity and modality

by allowing any number of locks to be removed from the right-hand end of the context

(together with any variables to the right of a removed lock). The □-I rule stays the

same, and forms part of an adjunction of the form “µ ⊣ □”.

µ /∈ Γ′
Var

Γ, A,Γ′ ⊢ A

Γ,µ ⊢ A
□-I

Γ ⊢ □A
µ /∈ Γ′ Γ ⊢ □A

□-EK
Γ,µ,Γ′ ⊢ A

A syntactic advantage of Fitch-style calculi over the calculus introduced by Pfenning

and Davies [1999] is that Fitch-style calculi support a projection-style eliminator for □,

which makes it easier to use than the pattern-matching eliminator of Pfenning and

Davies. A disadvantage is that µ cannot be understood as a kind of hypothetical

judgement like the rest of the context, so many of the heuristics we relied on in chapter 2

and section 3.1 fail. In fact, the addition of locks represents a large change to the

judgemental structure of the calculus, apparently requiring a complete overhaul of the

basic metatheory.

Valliappan et al. [2022] have completed a significant mechanisation of the metathe-

ory of a Fitch-style calculus in Agda. This work shows that, despite the change in the

structure of the metatheory, Fitch-style calculi are amenable to mechanised proofs.

I am not aware of any work discussing linear Fitch-style calculi.

3.3.5 Systematisations of substructural logics

Several pieces of prior work have aimed to give general accounts of a range of substruc-

tural calculi, in a similar vein to existing accounts of aspects of non-substructural calculi.

I review some of these, particularly as a way to give a comparison to the adaptation of

the methods of chapter 2 that I spend the rest of this thesis on.

Linear Logical Framework In section 2.6.5, I discussed logical frameworks based on

the λΠ-calculus, and their use in the mechanisation of non-substructural programming

languages. Cervesato and Pfenning [2002] extend λΠ to a calculus λΠ⊸&⊤, and use that

to create a logical framework supporting linear logics: the Linear Logical Framework

(LLF). The Π type former still forms intuitionistic weak dependent function spaces,

76

Chapter 3. Linearity and modality

while the new ⊸ forms linear weak non-dependent function spaces. They handle the

distinction between intuitionistic and linear variables thus introduced in the same style

as DILL, with the argument of an intuitionistic application having the same intuition-

istic restriction as we saw in DILL’s !-I rule.

The additive connectives & and ⊤ provide a way to state rules whose premises

respectively share and arbitrarily consume linear variables, like in the rules for additive

connectives in linear logic. I will revisit this method of stating typing rules in terms

of sharing and separating (as given by right-nested sequences of ⊸s) conjunctions of

premises in section 4.3, though in section 4.3.2 I argue that there is a closer connection

to bunched logics than linear logics.

The main focus of the original paper is to represent mutation in an ML-like language

via state updates mediated by ⊸, though they also mention having mechanised some

metatheory of linear calculi. Some example programs are currently available at https:

//www.cs.cmu.edu/~iliano/projects/LLF/index.html.

Encoding linearity in LF Crary [2010] gives a method of encoding linearity con-

straints in a conventional, non-substructural, logical framework. He implements this ap-

proach in the LF-based proof assistant Twelf [Pfenning and Schürmann, 1999]. He uses a

predicate linear : (term -> term) -> type, where term is a type of preterms, and

thus term -> term is (thanks to the weak function space of LF) the type of preterms

with one free variable. The predicate linear then says that that free variable is used

linearly in its term, which is defined inductively on the structure of preterms. The

linear predicate is used by the typing relation wherever variables are bound. The

development handles all of intuitionistic linear logic, with the !-modality treated with

a DILL-style distinction between linear and intuitionistic variables. Intuitionistic vari-

ables are implemented simply by not checking for linearity in the !-E rule. Crary [2010,

§4] also shows how to adapt this technique to a PD-style presentation of IS4.

As an example, let us look at the typing and linearity rules for the binary tensor

product. Typing is given by a relation of : term -> tp -> type, where tp is the

type of object-level types. Each syntactic form has a typing rule and potentially several

77

https://www.cs.cmu.edu/~iliano/projects/LLF/index.html
https://www.cs.cmu.edu/~iliano/projects/LLF/index.html

Chapter 3. Linearity and modality

linearity rules, understood disjunctively as logic programming clauses. The rules for

the introduction form are listed below. The typing relation is just like it would be for

pairs in the simply typed λ-calculus: (M,N) : A⊗B if M : A and N : B. The linearity

rules are symmetric, so I will just consider linear/tpair1. It says that x ⊢ (M [x], N)

is linear if x ⊢ M [x] is linear. This rule is subtle in that not applying x to N implies

that x is fresh (and therefore unused) in N. Where ⊗-pairs have two linearity rules, the

I-unit, and also the introduction form for !, have no linearity rules, meaning that no

linear variables can be used in or by them.

of/tpair : of (tpair M N) (tensor A B) <- of M A <- of N B.

linear/tpair1 : linear ([x] tpair (M x) N) <- linear ([x] M x).

linear/tpair2 : linear ([x] tpair M (N x)) <- linear ([x] N x).

Meanwhile, the rules for the eliminator are somewhat more involved, thanks to the

bound variables. First, the typing rule shows how of relies on linear, checking each

bound variable for linearity. Because we have two bound variables, we need to check

that the term N is linear in both. We do this by checking that, for all y, N is linear in x,

and that for all x, N is linear in y. The linearity rules have the same choice and careful

management of free variables as they did for the introduction form. In addition, in the

rule linear/lett2, the bound variables in N have to be universally quantified while we

check for linearity in the free variable z.

of/lett : of (lett M ([x] [y] N x y)) C

<- of M (tensor A B) <- ({x} of x A -> {y} of y B -> of (N x y) C)

<- ({y} linear ([x] N x y)) <- ({x} linear ([y] N x y))

linear/lett1 : linear ([z] lett (M z) ([x] [y] N x y))

<- linear ([z] M z)

linear/lett2 : linear ([z] lett M ([x] [y] N z x y))

<- ({x} {y} linear ([z] N z x y))

Crary [2010] goes on to extend this encoding with intuitionistic dependent Π-

types, producing an object theory comparable to the λΠ⊸&⊤ metatheory developed

78

Chapter 3. Linearity and modality

by Cervesato and Pfenning [2002]. If one wants to mix linearity and dependency fol-

lowing the methodology of Atkey [2018], then it is crucial that linear variables are still

free in subterms from which they have been discarded. At first sight, it appears that

Crary’s encoding violates this because of its use of “does not appear free” to mean “is

not used” in many linearity rules. However, one could imagine introducing an unused

predicate similar to linear in order to handle unused free variables, at the cost of a few

extra rules and a somewhat heavier encoding (scaling with the size of the term, rather

than the depth). Indeed, one could imagine parametrising the linear predicate so as

to encode the semiring-annotated systems I discuss in chapter 4.

The approach of Crary [2010] removes the objection to the work of Cervesato and

Pfenning [2002] that each new substructural discipline would need a new proof assistant

by encoding linearity in a standard intuitionistic logical framework. However, the en-

coding makes linear variables second-class compared to intuitionistic variables. While

intuitionistic variables are just there thanks to the metatheory, linear variables must

essentially be explicitly quantified.

Licata-Shulman-Riley Licata et al. [2017] describe a framework for specifying and

working with a wide range of substructural logics. I discuss exactly what this range is

in section 4.6, in relation to the calculi I describe in the rest of this thesis. For now, it

suffices to say that this framework is specified in enough detail that it should be possible

to mechanise it directly, but I am not aware of anyone having done so. Restall [1999]

describes a similar approach.

Tanaka-Power The work of Fiore et al. [1999], which I discussed in section 2.6.2, has

been extended to substructural syntaxes by Tanaka and Power [2006]. This work gives

a mechanism for turning a description of contexts and their structural rules (expressed

as a pseudo-monad on the 2-category of categories) into a framework for defining sub-

structural syntaxes, and more generally a category of algebras of which the syntax is the

initial object. As examples, they give the untyped λ-calculus, an untyped multiplicative

linear logic, and a bunched logic. These examples show a broad range of substructural

disciplines they support — comparable to the work of Licata et al. [2017] (which I dis-

79

Chapter 3. Linearity and modality

cuss in section 4.6), and more than I discuss in this thesis. However, they also show

two of the limitations of their approach. Firstly, this work provides no way to track

types, though it should be possible to incorporate types at the expense of complicating

the categorical constructions they use. Secondly, it appears to be impossible to encode

the syntactic forms used for the additive connectives (i.e., the Cartesian product and

coproduct) of linear logic. Essentially, subterms can only be combined into a larger

term in the same ways as how contexts can be appended together. For example, in a

bunched logic, contexts can be combined through both sharing conjunction (the Carte-

sian product) and separating conjunction (a monoidal product). Correspondingly, the

syntax descriptions of Tanaka and Power allow for the syntax of sharing pairs and sep-

arating pairs. However, in the case of linear logic, contexts can only be combined via

a monoidal product, so we only get separating pairs (tensor-products) and not sharing

pairs (with-products).

Semiring-annotated systems There have been several appearances in the literature

of calculi in which variables are annotated with some algebraic usage information which

is reflected in the types of the calculus. Such calculi appear in the work of Abadi et al.

[1999] and Reed and Pierce [2010], where annotations are used to control information

flow and sensitivity to perturbations, respectively. Following these disparate calculi,

the work of Brunel et al. [2014], Ghica and Smith [2014], and Petricek et al. [2014]

sought to unify these calculi using (variations on) partially ordered semirings as the

source of annotations. Each of these papers also provided further examples of calculi

with semiring usage annotations. I discuss calculi based on partially ordered semiring

annotations further in the following chapter, as it provides the basis for the rest of this

thesis.

80

Chapter 4

Usage restriction via semirings

The methods described in chapter 2 for the simply typed λ-calculus make crucial use of

weakening — the fact that if we have Γ ⊢ A, then we also have Γ,∆ ⊢ A. We use this

property to update environments as we take them under binders. However, as we saw

in chapter 3, there are interesting calculi in which general weakening does not hold. As

such, one of the aims of this chapter will be to find a form of weakening applicable to

variables of any type, while essentially retaining linearity (as opposed to affineness).

This chapter proceeds as follows. In section 4.1, I give an intuitive introduction to

semiring annotations on variables, based on replicating features of DILL (introduced

in section 3.2.3). Then, section 4.2 formalises the ideas of section 4.1 into a calculus

λR. This calculus has appeared in my previous work [Wood and Atkey, 2021], and can

be seen as a simply typed version of Atkey’s dependently typed calculus QTT [Atkey,

2018]. Given this new calculus λR, the first goal is to apply the techniques of chapter 2

to it, yielding a simultaneous substitution operation. To do this, I use section 4.3 to

introduce notation that allows us to restate the typing rules of λR to not mention

contexts explicitly, as was the style in chapter 2. This new notation — the bunched

connectives — is versatile at defining simply typed usage-aware syntaxes, and I give

further non-λR examples in section 4.4. Finally, I justify connections to linear logic

and modal logic in section 4.5, where I translate λR terms to and from DILL [Barber,

1996] and the modal calculus of Pfenning and Davies [1999].

This chapter and the following chapter re-present and expand the work of Wood and

81

Chapter 4. Usage restriction via semirings

Atkey [2021]. For the thesis version, I have dropped mention of skew semirings, which

allows the algebraic components to be more robust and better abstracted. In particular,

in chapter 5, I talk about linear maps rather than matrices, and define environments in

terms of usage-checked variables rather than raw well typed variables.

4.1 Motivation for semiring annotations

The question of defining calculi which do not semantically admit weakening and con-

traction but also do not rely on variables going out of scope is directly addressed by

McBride [2016]. The first technique suggested is to, instead of removing variables from

the context of certain subterms, add an annotation to free variables saying whether

or not they are to be used. I use an annotation 0 on variables that are not to be

used, and an annotation 1 on variables that are to be used. This convention lets us

transcribe the usual ⊗-introduction rule (below left) as a rule with usage annotations

(below right). In the notation on the right, I let Γ = Pγ and ∆ = Qδ, where Γ is a

whole context comprising a usage context P and a typing context γ. A usage context is

a list of usage annotations, so P = r1, . . . , rm and a typing context is a list of types, so

γ = A1, . . . , Am. When combined, the usage context and the typing context will be of

the same length. Explicit contexts will usually be written with usage annotations and

types interspersed, as r1A1, . . . , rmAm. I use rγ to abbreviate rx1, . . . , rxm.

Γ ⊢ A ∆ ⊢ B

Γ,∆ ⊢ A⊗B
⇝

1γ, 0δ ⊢ A 0γ, 1δ ⊢ B

1γ, 1δ ⊢ A⊗B

The eventual target of all these 0-annotated variables is the variable rule, which I

transcribe as follows. The 1 shows us that we can use the variable thus annotated, while

the 0s let us discard all of the other variables in γ.

A ⊢ A ⇝ 0γ, 1A ⊢ A

The use of 0 gives us the property that variables never go out of scope in subterms;

rather, we lose the ability to use certain variables, but retain the ability to refer to

them metatheoretically. Additionally, we recover a form of weakening: if Γ ⊢ A, then

82

Chapter 4. Usage restriction via semirings

also Γ, 0δ ⊢ A, because the resulting term indeed uses no variables from δ. I prove the

admissibility of weakening for terms will come in section 5.3.

If we follow the DILL style of variable management explained in section 3.2.3, there

are not just the two states to be used (1) and not to be used (0), but also usable

unrestrictedly. If we assign unrestricted (or intuitionistic) variables an annotation ω,

we can make the following transcription of the DILL ⊗-introduction rule.

Θ;Γ ⊢ A Θ;∆ ⊢ B

Θ;Γ,∆ ⊢ A⊗B
⇝

ωθ, 1γ, 0δ ⊢ A ωθ, 0γ, 1δ ⊢ B

ωθ, 1γ, 1δ ⊢ A⊗B

To conceptualise the criteria on the usage annotations involved in this rule, I intro-

duce an additive structure over usage annotations. The rule stated above relies on the

facts that 1 + 0 = 1, 0 + 1 = 1, and ω + ω = ω. Addition lifts pointwise to vectors of

usage annotations (the green capital calligraphic P, Q, and R). A beneficial side-effect

of the fact that 0 + 0 = 0 is that the rule on the right below is actually more general,

and accepts 0-annotated variables in its conclusion, which is essential for weakening to

be admissible.

ωθ, 1γ, 0δ ⊢ A ωθ, 0γ, 1δ ⊢ B

ωθ, 1γ, 1δ ⊢ A⊗B
⇝

R = P +Q Pγ ⊢ A Qγ ⊢ B

Rγ ⊢ A⊗B

Some other transcriptions from DILL to the usage annotation style are as follows.

I unify the variable rules (the one for linear variables and the one for intuitionistic

variables) by introducing a coercibility ordering ≤ on usage annotations. We have

ω ≤ 1 because an intuitionistic variable can fill the demand of a linear variable by

dereliction. We also have ω ≤ 0, because intuitionistic variables can be weakened

away like 0-annotated variables. This ordering information is shown in the diagram

ω

0 1

. All together, this means that at the (only) variable rule, the variable being

used must have annotation less than or equal to 1, and every other variable must have

annotation less than or equal to 0. I write this requirement as R ≤ ⟨x|, where ⟨x| is the

basis vector at position x.

83

Chapter 4. Usage restriction via semirings

Θ;A ⊢ A ⇝ ωθ, 1A, 0δ ⊢ A ⇝
R ≤ ⟨x| γx = A

Rγ ⊢ A

Θ, A; · ⊢ A ⇝ ωθ, ωA, 0δ ⊢ A ⇝
R ≤ ⟨x| γx = A

Rγ ⊢ A

The final interesting rule form to cover is found in DILL’s !-introduction rule. DILL’s

!-introduction can be though of as an ω-ary counterpart to ⊗-introduction, though with

the same premise each time rather than ω-many premises. This explains why only

ω- and 0-annotated variables can appear in the conclusion of !-introduction, and also

justifies the choice below of multiplication (vector scaling) as the algebraic operation

controlling the !-modality.

Θ; · ⊢ A

Θ; · ⊢ !A
⇝

ωθ, 0δ ⊢ A

ωθ, 0δ ⊢ !A
⇝

R ≤ ωP Pγ ⊢ A

Rγ ⊢ !ωA

In summary, the structure we have required of the set of usage annotations is

that they have addition (for ⊗-introduction and similar rules), multiplication (for !-

introduction), a 1 (for a variable being used), a 0 (for a variable not being used), and an

ordering (allowing for subsumption of usage restrictions). Together, these form a par-

tially ordered semiring (posemiring), the laws of which are both supported by examples

and necessary for the syntax to be well behaved.

Definition 4.1.1. A semiring is a monoid in the multicategory of commutative monoids

and multilinear maps. Unpacked, this means that we have a set R together with

elements 0 and 1 and binary operators + and · (with · usually written as juxtaposition)

such that the following hold for all x, y, z ∈ R.

• 0 + x = x; x+ 0 = x; (x+ y) + z = x+ (y + z); x+ y = y + x

• 1x = x; x1 = x; (xy)z = x(yz)

• 0x = 0; x0 = 0; (x+ y)z = xz + yz; x(y + z) = xy + xz

Definition 4.1.2. A posemiring is a semiring in the category of partially ordered sets

(posets). Unpacked, this means that we have a semiring (in the category of sets)

84

Chapter 4. Usage restriction via semirings

A,B,C ::= I | A⊗B | A⊸ B | ⊤ | A&B | 0 | A⊕B | !rA

Figure 4.1: The types of λR

(R, 0,+, 1, ·) such that R has a partial order (written ≤) and addition and multiplication

are monotonic with respect to ≤ in both arguments.

For concreteness, I collect together the definition of the {0, 1, ω} posemiring I have

been using so far.

Example 4.1.3. The {0, 1, ω} posemiring, also known as the linearity posemiring, has

the operations given as follows, with 0 := 0 and 1 := 1:

+ 0 1 ω

0 0 1 ω

1 1 ω ω

ω ω ω ω

∗ 0 1 ω

0 0 0 0

1 0 1 ω

ω 0 ω ω

ω

0 1

4.2 A usage-annotated calculus λR

In this section, I introduce the syntax of the type theory λR, which makes use of

posemiring usage annotations to express the usage restrictions found in DILL and other

calculi. For the rest of this thesis, particularly chapters 4 and 5, λR will serve as both

a prototypical usage-constrained syntax and a target of semantic analyses.

The calculus λR is similar in spirit to intuitionistic linear logic (ILL), which we saw

in chapter 3. The types of λR, listed in figure 4.1, are almost identical to those of

ILL, differing only in the exponential modality ! (read “bang”). In particular, I include

distinguished tensor- and with-product types (⊗, &) and their units (I, ⊤), function

types (⊸), additive sum types and their unit (⊕, 0), and the graded modality !r. The

idea of !r is to internalise an annotation of r on a variable in the context.

I will not cover any operational semantics or equational theory of λR in this thesis.

I will discuss a denotational semantics inspired by that of Abel and Bernardy [2020] in

section 8.3.

The following features are of note.

85

Chapter 4. Usage restriction via semirings

γ ∋ x : A P ≤ ⟨x|
Var

Pγ ⊢ A

P ≤ 0
I-I

Pγ ⊢ I

R ≤ P +Q Pγ ⊢ I Qγ ⊢ C
I-E

Rγ ⊢ C

R ≤ P +Q Pγ ⊢ A
Qγ ⊢ B

⊗-I
Rγ ⊢ A⊗B

R ≤ P +Q
Pγ ⊢ A⊗B

Qγ, 1A, 1B ⊢ C

⊗-E
Rγ ⊢ C

Rγ, 1A ⊢ B
⊸-I

Rγ ⊢ A⊸ B

R ≤ P +Q Pγ ⊢ A⊸ B Qγ ⊢ A
⊸-E

Rγ ⊢ B

⊤-I
Rγ ⊢ ⊤ (no ⊤-E)

Rγ ⊢ A Rγ ⊢ B
&-I

Rγ ⊢ A&B

Rγ ⊢ A0 &A1
&-Ei, for i ∈ {0, 1}

Rγ ⊢ Ai

(no 0-I)
R ≤ P +Q Pγ ⊢ 0

0-E
Rγ ⊢ C

Rγ ⊢ Ai ⊕-Ii, for i ∈ {0, 1}
Rγ ⊢ A0 ⊕A1

R ≤ P +Q
Pγ ⊢ A⊕B

Qγ, 1A ⊢ C
Qγ, 1B ⊢ C

⊕-E
Rγ ⊢ C

R ≤ rP Pγ ⊢ A
!-I

Rγ ⊢ !rA

R ≤ P +Q Pγ ⊢ !rA Qγ, rA ⊢ C
!-E

Rγ ⊢ C

Figure 4.2: λR

86

Chapter 4. Usage restriction via semirings

Subusaging Several typing rules contain constraints of the form P ≤ Q, for certain

usage vectors P and Q. We saw subusaging in the introduction to this chapter in the

specific case of R being formed from the poset {0 > ω < 1}. This allowed variables

annotated ω (“unrestricted”) to be both weakened/discarded (because ω ≤ 0) and dere-

licted/used (because ω ≤ 1). Subsumption of usage annotations is essential to nearly

all interesting choices of R. However, in the toy example of exact usage counting using

the set N of annotations, we set the order to be just equality as a matter of simplicity.

For usage annotations r and s, the inequality r ≤ s states that an assumption with

annotation r can be used wherever an assumption with annotation s is required. A

mnemonic is that r is less specific than s. The principle is reflected by the admissible

subusaging rule, where the order has been lifted from annotations to usage contexts.

The subusaging rule is a simple corollary of renaming, as given in chapter 5.

P ≤ Q Qγ ⊢ A
Subuse

Pγ ⊢ A

Note that my subusaging order is reversed relative to the similar ordering found in

previous work — particularly Orchard et al. [2019] and related work from those authors.

I find the order I use preferable because it matches the standard for simultaneous

renaming and substitution (we will see later that a ≤-relationship between contexts gives

rise to a renaming), and all of these make rules like Subuse interpretable as generalised

notions of composition between orderings/renamings/substitutions and terms.

Tensor- and with-products Like intuitionistic linear logic (ILL), λR distinguishes

tensor-products (A ⊗ B) from with-products (A & B). Whereas in ILL, rules like ⊗-

introduction involve splitting the assumptions between the two subterms, in λR, this

splitting is done by choosing usage annotations for the premises which add up to the

usage annotations of the conclusion. For example, we can derive ⊢ A⊗B⊸ B ⊗A as

follows. Notice that the assumption A ⊗ B is still present in all subderivations, even

after it has been “used up”. The only thing that stops us using the assumption again is

that, for a general choice of R, we do not have 0 ≤ 1 or 1 ≤ 1 + 1.

87

Chapter 4. Usage restriction via semirings

∇ := (0 1 1) ≤ (0 0 1) + (0 1 0)

(0 0 1) ≤ (0 0 1)
Var

0(A⊗B), 0A, 1B ⊢ B

(0 1 0) ≤ (0 1 0)
Var

0(A⊗B), 1A, 0B ⊢ A
⊗-I

0(A⊗B), 1A, 1B ⊢ B ⊗A

(1) ≤ (1) + (0)

(1) ≤ (1)
Var

1(A⊗B) ⊢ A⊗B
∇

0(A⊗B), 1A, 1B ⊢ B ⊗A
⊗-E

1(A⊗B) ⊢ B ⊗A
⊸-I

⊢ A⊗B⊸ B ⊗A

Example 4.2.1. Let A ˛ B abbreviate (A⊸ B) & (B⊸ A). Then the following

judgements hold for any partially ordered semiring. Derivations are left as an exercise

to the reader.

• ⊢ A⊕A⊸ A

• ⊢ A⊸ A&A

• ⊢ A⊕ 0 ˛ A

• ⊢ A⊗ 0 ˛ 0

• ⊢ !1A ˛ A

• If r ≤ s, then ⊢ !rA⊸ !sA

Example 4.2.2. Let R := (N,=, 0,+, 1,×), that is, specialise to the posemiring made

of the usual semiring of natural numbers with ordering given by equality. Under this

discipline, the usage constraints enforce a form of exact usage counting. The following

judgements then hold. Derivations are left as an exercise to the reader.

• ⊢ !2A⊸ A⊗A

• ⊢ !5A⊸ !2A⊗ !3A

88

Chapter 4. Usage restriction via semirings

4.2.1 Other posemirings

Now that we have seen the role of usage annotations in λR, I will give more examples

of posemirings for tracking interesting usage patterns.

Example 4.2.3. The singleton set gives rise to a posemiring in a unique way. When

the usage annotations of λR are taken from this trivial posemiring, we recover a version

of intuitionistic simply typed λ-calculus featuring redundant connectives ⊗ (equivalent

to & in the pure setting) and !∗ (where !∗A ≃ A).

Example 4.2.4. The monotonicity posemiring is defined over the set of symbols

{??, ↑↑, ↓↓,∼∼}. The idea is that each symbol represents the possible variance of

an input (free variable) with respect to some partial ordering on a semantic domain

of elements. ↑↑ represents covariance (if that input goes up, the output goes up), ↓↓

represents contravariance (if that input goes down, the output goes up), ∼∼ gives no

guarantees (if that input remains constant, the output (trivially) goes up), and ?? says

that that input is irrelevant (whatever changes are made to that input, the output

(trivially) goes up).

I take 0 := ??, 1 := ↑↑, and define the following operations:

+ ?? ↑↑ ↓↓ ∼∼

?? ?? ↑↑ ↓↓ ∼∼

↑↑ ↑↑ ↑↑ ∼∼ ∼∼

↓↓ ↓↓ ∼∼ ↓↓ ∼∼

∼∼ ∼∼ ∼∼ ∼∼ ∼∼

∗ ?? ↑↑ ↓↓ ∼∼

?? ?? ?? ?? ??

↑↑ ?? ↑↑ ↓↓ ∼∼

↓↓ ?? ↓↓ ↑↑ ∼∼

∼∼ ?? ∼∼ ∼∼ ∼∼
∼∼

↑↑ ↓↓

??

Addition represents an intersection of guarantees. For example, if a variable is used

covariantly in one subterm and contravariantly in another, we can only make the trivial

guarantee represented by ∼∼. Multiplication is mainly interesting for multiplication

by ↓↓, which flips the variance on any other annotation. As such, !↓↓A represents

a contravariant A. The flipping (involutive) behaviour of ↓↓ lets us notice that x is

covariant in a term like −(−x), where − is a constant of type !↓↓Z⊸ Z.

A similar, but distinct, collection of modalities for monotonicity is given by Arntze-

nius [2019].

89

Chapter 4. Usage restriction via semirings

Example 4.2.5. The sensitivity posemiring [Reed and Pierce, 2010] is given by (R+,≥

, 0,+, 1,×), where R+ is the non-negative real numbers extended with ∞ (distances),

and the rest of the structure comes from the standard operations on real numbers

(except that 0×∞ = ∞× 0 = 0). Note that the order is reversed, making ∞ coercible

to any other annotation and anything coercible to 0.

The intended semantics for these annotations is to interpret types as metric spaces

and terms as Lipschitz-continuous maps. That is to say, each type A comes with a

notion of distance dA, and a map f : A → B satisfies

∃r ∈ R+.∀x, y. dB(f(x), f(y)) ≤ rdA(x, y).

I internalise this constant r so that derivations of rA ⊢ B are interpreted as r-Lipschitz-

continuous functions. If r = ∞, then the Lipschitz condition is trivially satisfied,

meaning that ∞-annotated variables can be used without constraint. If r = 0, then f

has to be constant, and the corresponding syntactic constraint is that a 0-annotated

variable cannot be used.

Addition forbids general contraction, which would otherwise allow arbitrary finite

blow-up of the effect of any non-0-annotated variable. However, the ordering, with 0

at the top, means that we have general weakening, so the resulting sensitivity calculus

has an affine flavour.

Such a system has been applied to sensitivity analysis, a component of differential

privacy, by Reed and Pierce [2010].

4.3 Bunched connectives

The typing rules of λR presented in figure 4.2 contain a lot of detail and repeated

patterns. For example, nearly half of the rules include the premise R ≤ P +Q. Also,

the presence of usage annotations, which are often different in different parts of a rule,

means that we keep repeating the context. Explicit contexts go against the style we

established in chapter 2, which is based around being parametric in the context, so that

substitution is agnostic to the details of typing rules.

90

Chapter 4. Usage restriction via semirings

To encapsulate the repeated patterns and facilitate an implicit context style, I intro-

duce the bunched connectives for premises. These are inspired by bunched logic [O’Hearn

and Pym, 1999], and will not only be used for stating the syntax, but will be used as

an abstraction of common patterns in the development of the metatheory. The idea is

to generalise the space between premises from Gentzen’s natural deduction to allow for

any linear combination of usage annotations. Among other things, this generalisation

will allow us to distinguish between &-introduction and ⊗-introduction by a choice of

connective: either sharing or separating conjunction. These connectives are defined in

figure 4.3 in Agda notation.

The bunched connectives are parametrised over two sets and three relations. For

syntax, the set A will be Ctx, the type of contexts, and R will be Ann, the type of

usage annotations (scalars). For the relations, the notation is meant to be suggestive,

with Γ ≤0 typically stating that all of the annotations in Γ are less than or equal to

0; Γ ≤[∆ + Θ] typically stating that Γ, ∆, and Θ all agree on their types but the

usage context of Γ is less than or equal to the sum of the usage contexts of ∆ and Θ;

and Γ ≤[r *l ∆] typically stating that Γ and ∆ agree on their types but have the

evident scaling relationship with r on their usage annotations. I use the same symbols

for the connectives both in Agda code and in otherwise standard mathematical/logical

notation.

The first two connectives are those we’ve already seen for intuitionistic systems —

1̇ and ×̇. The absence of premises is encoded by 1̇, while the space between premises

sharing a context is encoded by ×̇. As for implication, I temporarily avoid giving a

→̇ connectives, instead fusing it together with ∀[−] to produce the set of context-

preserving functions T _ U . When we interpret a typing rule as a constructor of an

inductive definition, _ interprets the horizontal line, reflecting the fact that the usage

annotations we start off with in the premises are those of the conclusion, corresponding

to a general principle of resource conservation. The prototypical rules that use 1̇ and ×̇

are the introduction rules for ⊤ and &, respectively.

91

Chapter 4. Usage restriction via semirings

Parameters:

{A R : Set} (_≤0 : A → Set) (_≤[_+_] : A → A → A → Set)
(_≤[_*l_] : A → R → A → Set)

Connectives:

1̇ : A → Set
1̇ _ = ⊤

×̇ : (T U : A → Set) → A → Set
(T ×̇ U) x = T x × U x

___ : (T U : A → Set) → Set
T _ U = ∀ {x} → (T x → U x)

record I∗ (x : A) : Set where
constructor I∗⟨_⟩
field

split : x ≤0

record _∗_ (T U : A → Set) (x : A) : Set where
constructor _∗⟨_⟩_
field

{y z} : A
T-prf : T y
split : x ≤[y + z]
U-prf : U z

record _−∗_ (T U : A → Set) (x : A) : Set where
constructor lam∗
field

app∗ : ∀ {y z} (split : z ≤[x + y]) (T-prf : T y) → U z

record _·_ (r : R) (T : A → Set) (x : A) : Set where
constructor ⟨_⟩·_
field

{z} : A
split : x ≤[r *l z]
T-prf : T z

Figure 4.3: The bunched connectives

92

Chapter 4. Usage restriction via semirings

RΓ ⊢ ⊤ ⇝ 1̇

⊢ ⊤

RΓ ⊢ A RΓ ⊢ B

RΓ ⊢ A&B
⇝ ⊢ A ×̇ ⊢ B

⊢ A&B

The rest of the bunched connectives — I∗, ∗, ·, and −∗ — involve linear decom-

positions of the usage annotations. The three basic left semimodule operators — zero,

addition, and left-scaling — each get a bunched connective — I∗, ∗, and r ·, respectively.

The prototypical typing rules for each of these three connectives are the introduction

rules for I, ⊗, and !r, respectively.

R ≤ 0

RΓ ⊢ I
⇝

I∗

⊢ I

PΓ ⊢ A QΓ ⊢ B R ≤ P +Q
RΓ ⊢ A⊗B

⇝
⊢ A ∗ ⊢ B

⊢ A⊗B

PΓ ⊢ A R ≤ rP
RΓ ⊢ !rA

⇝
r · (⊢ A)

⊢ !rA

4.3.1 λR stated using bunched connectives

The full system λR is stated in terms of bunched connectives in figure 4.4. The bunched

connectives also yield a reasonably concise definition of the Agda data type of λR

derivations, as seen in figure 4.5.

4.3.2 Connection with bunched logic

While we have seen a connection between the bunched connectives and the connectives

of λR, the two should not be confused. In particular, the bunched connectives obey

different laws to what we would expect from linear logic. For example, it would make

sense to define a bunched connective ∔, defined analogously to ×̇. This ∔ could be

93

Chapter 4. Usage restriction via semirings

⊐− A
Var

⊢ A

I∗
I-I

⊢ I

⊢ I ∗ ⊢ C
I-E

⊢ C

⊢ A ∗ ⊢ B ⊗-I
⊢ A⊗B

⊢ A⊗B ∗ 1A, 1B ⊢ C
⊗-E

⊢ C

1A ⊢ B
⊸-I

⊢ A⊸ B

⊢ A⊸ B ∗ ⊢ A
⊸-E

⊢ B

1̇ ⊤-I
⊢ ⊤

(no ⊤-E)

⊢ A ×̇ ⊢ B
&-I

⊢ A&B

⊢ A0 &A1
&-Ei, for i ∈ {0, 1}

⊢ Ai

(no 0-I) ⊢ 0 ∗ 1̇
0-E

⊢ C

⊢ Ai ⊕-Ii, for i ∈ {0, 1}
⊢ A0 ⊕A1

⊢ A⊕B ∗ (1A ⊢ C ×̇ 1B ⊢ C)
⊕-E

⊢ C

r · (⊢ A)
!-I

⊢ !rA

⊢ !rA ∗ rA ⊢ C
!-E

⊢ C

Figure 4.4: λR stated using bunched connectives

94

Chapter 4. Usage restriction via semirings

data Ty : Set where
ι I ⊤ O : Ty
⊗ _⊸_ _&_ _⊕_ : (A B : Ty) → Ty
! : Ann → Ty → Ty

Bind : Ctx → (Ctx → Set) → (Ctx → Set)
Bind ∆ T Γ = T (Γ ++c ∆)

data _⊢_ : Ctx → Ty → Set where
var : _⊐− A _ _⊢ A
Ii : I∗ _ _⊢ I
Ie : _⊢ I ∗ _⊢ C _ _⊢ C
⊗i : _⊢ A ∗ _⊢ B _ _⊢ A ⊗ B
⊗e : _⊢ A ⊗ B ∗ Bind ([1# • A]c ++c [1# • B]c) (_⊢ C)

_
_⊢ C

⊸i : Bind [1# • A]c (_⊢ B) _ _⊢ A⊸ B
⊸e : _⊢ A⊸ B ∗ _⊢ A _ _⊢ B
⊤i : 1̇ _ _⊢ ⊤
&i : _⊢ A ×̇ _⊢ B _ _⊢ A & B
&e0 : _⊢ A & B _ _⊢ A
&e1 : _⊢ A & B _ _⊢ B
Oe : _⊢ O ∗ 1̇ _ _⊢ C
⊕i0 : _⊢ A _ _⊢ A ⊕ B
⊕i1 : _⊢ B _ _⊢ A ⊕ B
⊕e : _⊢ A ⊕ B ∗ (Bind [1# • A]c (_⊢ C) ×̇ Bind [1# • B]c (_⊢ C))

_
_⊢ C

!i : r · _⊢ A _ _⊢ ! r A
!e : _⊢ ! r A ∗ Bind [r • A]c (_⊢ C) _ _⊢ C

Figure 4.5: λR stated using bunched connectives in Agda

95

Chapter 4. Usage restriction via semirings

used to rephrase the introduction rules for ⊕. We then have maps both ways between

T ×̇ (U ∔ V) and (T ×̇ U) ∔ (T ×̇ V), reminiscent of the distributivity of additive

connectives in bunched logic, whereas linear logic only has a map from (A&B)⊕(A&C)

to A & (B ⊕ C), and not a map the other way. Looking at the interpretations, the

connection with bunched logic makes sense. Instead of the partial commutative monoid

(often representing heaps) found in standard semantics of bunched logic, we have a left

semimodule of usage contexts, which we are similarly interested in splitting and sharing

between various subterms.

From bunched logic, we would expect the Cartesian product ×̇ to have an internal

hom. In the intuitionistic case, →̇ filled this role. However, with usage contexts, it

makes sense for open types to be presheaves over the partial order of contexts under

pointwise ≤ of usage annotations. The family T →̇ U does not satisfy the functoriality

condition because of the contravariance in the domain T . Instead, as found in models of

bunched logic, we would want a Kripke function space, like λΓ. ∀Γ′ ≤ Γ. T Γ′ → U Γ′.

However, I do not make use of such a connective.

The separating conjunction ∗ can be seen as a decategorified version of Day con-

volution [Day, 1970]. It also resembles the use of ternary frames in semantics of non-

distributive logics [Restall, 1999, chapter 12].

4.3.3 Operations on bunched connectives

To manipulate terms and other open types defined using bunched connectives, we need

the zero, addition, and multiplication relations to satisfy some laws. For example, to

achieve a symmetry map T ∗U _ U ∗T , we need addition to satisfy the commutativity

law ∀x, y, z : A. x ≤ y + z → x ≤ z + y.

For all uses of bunched connectives in this thesis, the carrier set A will form a

partial order — for example, with contexts, the order is given by the pointwise or-

der on the usage vectors. We then consider the category whose objects are posets

and whose morphisms are relations R : A →+ B satisfying the contravariant-covariant

law ∀x, x′, y, y′. x′ ≤ x → y ≤ y′ → xRy → x′Ry′. This category can be given the

usual monoidal product of relations, which is the pointwise product of posets on ob-

96

Chapter 4. Usage restriction via semirings

jects. Then, we will always expect zero and addition to together form a cocommutative

comonoid in this category. With this structure, we can get the following equivalences

and functions.

I∗ ∗ T] T T ∗ I∗] T (T ∗ U) ∗ V] T ∗ (U ∗ V) T ∗ U] U ∗ T

(T −∗ U) ∗ T _ U I∗ −∗ T] T (T ∗ U) −∗ V] T −∗ (U −∗ V)

I do not use algebraic properties of multiplication in conjunction with manipulation

of bunched connectives in this thesis, but we could expect scalar multiplication to add

a comodule structure over cosemiring R to the cocommutative comonoid given by zero

and addition.

4.4 Additions to and variations of λR

The bunched connectives give us a means by which to quickly design and experiment

with new type systems. We will see in chapter 6 that all such syntaxes are well behaved

to the extend that they all support the appropriate notion of substitution, which again

expedites experimentation. In this section, I give some example syntactic features that

can be covered in the bunched connective paradigm.

4.4.1 Alternative object-language connectives

I presented λR as an essentially arbitrary collection of rules, with no broader charac-

terisation than that it intuitively seems to capture some notion of “usage” and that it

supports the semantics I give in section 8.3. Therefore, in this subsection I give some

examples of variant syntaxes others, with different use cases, may be interested in. In

particular, I give a variant of function types where usage annotations go “on the arrow”,

and a variant of tensor products with a stronger elimination rule.

We can produce an annotated function arrow connective by combining parts of

the rules for the unannotated function arrow ⊸ with parts of the rules for the modal

operator !.

97

Chapter 4. Usage restriction via semirings

rA ⊢ B
r⊸-I

⊢ rA⊸ B

⊢ rA⊸ B ∗ r · (⊢ A)
r⊸-E

⊢ B

We can also give an alternative elimination rule for ⊗-products, as found in Gran-

ule [Hughes et al., 2021, Orchard et al., 2019] and the work of Abel and Bernardy [2020]

and Reed and Pierce [2010]. This modified rule allows us to, for example, have a variable

rx : A ⊗ B for any r, and pattern-match it into ry : A, rz : B. With the standard λR

rule from figure 4.2, the newly bound variables are always given annotation 1, and we

would only be able to do the match in the first place if r were coercible to (i.e. less than

or equal to) 1. The alternative rule below is not compatible with linear logic, because

it allows us to derive !r(A⊗B)⊸ !rA⊗ !rB parametric in r, A, and B.

r · (⊢ A⊗B) ∗ rA, rB ⊢ C
⊗-E′

⊢ C

4.4.2 Adding inductive types and recursion

Based on an intuitive understanding of “usage”, recursion introduces a new phenomenon

relative to the forms of programs we have seen so far: Terms can be used an unbounded

number of times. For example, notice the following reduction in Agda.

foldr _+_ 0 (1 :: 2 :: 3 :: []) ⇝

1 + foldr _+_ 0 (2 :: 3 :: []) ⇝

1 + (2 + foldr _+_ 0 (3 :: [])) ⇝

1 + (2 + (3 + foldr _+_ 0 [])) ⇝

1 + (2 + (3 + 0))

The function _+_ has been copied into 3 different places in the running of the

program. This copying is despite no type telling us that _+_ would be used 3 times

(both [1,2,3] and [2,3] have type List N, despite the corresponding folds using _+_

a different number of times). As such, when checking an application of foldr, we need

check that we can use its functional argument (_+_ in this case) an arbitrary number

98

Chapter 4. Usage restriction via semirings

of times. If we were to fix R as the {0, 1, ω} posemiring, then wrapping the type of

the functional argument in !ω would suffice. However, we want to remain generic in the

choice of semiring.

The following additions to λR support a broad class of inductive types. I define

strictly positive functors syntactically, with the only notable restrictions being not being

allowed to use the type variable X in the domain of a function type and within a !-type.

I then add least fixed points of such strictly positive functors to the syntax of types.

U ::= A⊸ (−)

⊙ ::= ⊗ | ⊕ | &

F [X], G[X] ::= X | A | U(F [X]) | F [X]⊙G[X]

A ::= · · · | µX. F [X]

Example 4.4.1. We may define ListA := µX. I ⊕ (A⊗X).

In the typing rules, introduction of an inductive type is standard. For the elimination

rule, we follow a similar pattern to other pattern-matching rules — ⊕-E, ⊗-E, and !-

E — by splitting the context and typing the eliminand in one half (P). We type the

continuation in the other half, but because the continuation may be used multiple times,

and in a modal context, we require that Q is preserved by all linear operations.

Rγ ⊢ F [µX. F [X]]
µ-I

Rγ ⊢ µX. F [X]

R ≤ P +Q Pγ ⊢ µX. F [X]
Q ≤ 0

Q ≤ Q+Q
Qγ, 1F [C] ⊢ C

µ-E
Rγ ⊢ C

Example 4.4.2. For lists, we can derive the following introduction and elimination

rules (with usage constraints in the application of µ-E in the foldr rule, relating R to

P and Q and restricting Q, omitted to save space).

99

Chapter 4. Usage restriction via semirings

nil


R ≤ 0

I-I
Rγ ⊢ I

⊕-I0
Rγ ⊢ I ⊕ (A⊗ ListA)

µ-I
Rγ ⊢ ListA

cons


R ≤ P +Q Pγ ⊢ A Qγ ⊢ ListA ⊗-I

Rγ ⊢ A⊗ ListA ⊕-I1
Rγ ⊢ I ⊕ (A⊗ ListA)

µ-I
Rγ ⊢ ListA

foldr

Pγ ⊢ ListA

Var
0γ, 1(I ⊕ (A⊗ C)) ⊢ I ⊕ (A⊗ C) ∇n ∇c

⊕-E
Qγ, 1(I ⊕ (A⊗ C)) ⊢ C

µ-E
Rγ ⊢ C

where ∇n :=

Var
0γ, 1I ⊢ I

Qγ ⊢ C
Wk

Qγ, 0I ⊢ C
I-E

Qγ, 1I ⊢ C
Wk

Qγ, 0(I ⊕ (A⊗ C)), 1I ⊢ C

and ∇c :=

Var
0γ, 1(A⊗ C) ⊢ A⊗ C

Qγ, 1A, 1C ⊢ C
Wk

Qγ, 0(A⊗ C), 1A, 1C ⊢ C
⊗-E

Qγ, 1(A⊗ C) ⊢ C
Wk

Qγ, 0(I ⊕ (A⊗ C)), 1(A⊗ C) ⊢ C

Following section 4.3, I want to turn the ad hoc constraints on P, Q, and R into

the result of some premise connectives. To do this, I introduce a new connective □0+

defined below, along with the resulting implicit-context typing rules.

record □0+ (T : A → Set) (x : A) : Set where

constructor □⟨_,_,_⟩_

field

{y} : A

strengthen : x ≤ y

split-0 : y ≤0

split-+ : y ≤[y + y]

T-prf : T y

100

Chapter 4. Usage restriction via semirings

⊢ F [µX. F [X]]
µ-I

⊢ µX. F [X]

⊢ µX. F [X] ∗ □0+(1F [C] ⊢ C)
µ-E

⊢ C

Example 4.4.3. We can state the rules for lists derived in example 4.4.2 as follows.

I∗

⊢ ListA

⊢ A ∗ ⊢ ListA

⊢ ListA

⊢ ListA ∗ □0+
(
⊢ C ×̇ 1A, 1C ⊢ C

)
⊢ C

Among the inductive types given by this µ operator are also &-lists (with-lists).

Example 4.4.4. Let us define &-lists as follows.

WithListA := µX. ⊤⊕ (A&X)

Unlike ordinary lists (which we may call ⊗-lists), &-lists support a lookup operation

with the type below, where N := µX. I ⊕X.

lookup : WithListA⊸ N⊸ ⊤⊕A

The λR term implementing lookup in terms of iterators (µ-E) is complex and tedious, so

I do not show it here. Instead, I provide the following clausal specification, where nil(−)

and cons(−) are the constructors of &-lists, zero() and succ() are the constructors of

N, inl(−) and inr(−) are the constructors of ⊕, ⟨⟩ constructs the inhabitant of ⊤, and

postfix .πl and .πr are the projections out of a &-pair.

lookup nil(t) i := inl(⟨⟩)

lookup cons(xxs) zero() := inr(xxs.πl)

lookup cons(xxs) succ(i) := lookup (xxs.πr) i

As suggested by the notation, □0+ may not be particularly canonical in terms of

what operations the usage context is stable under. For example, we could also ask for

∀r. Q ≤ rQ, i.e. that the usage context is stable under any scaling. This would allow us

to include !r(−) in our grammar of strictly positive functors. In certain semirings, this

101

Chapter 4. Usage restriction via semirings

could give us strange types, like, taking the monotonicity semiring, the type µX. I ⊕

(ι ⊗ !↓↓X), which is the type of lists over the base type ι where alternating elements

are treated contravariantly and covariantly. This may motivate us to restrict strictly

positive functors to allow only a subset of usage annotations. Separately, in some

contexts we may only need to know that Q ≤ 0. For example, in the linearity semiring,

being less than or equal to 0 happens to imply closure under addition, because the only

annotations less than or equal to 0 are 0 and ω. Also, in semirings for relevant systems,

all annotations are stable under addition (up to ≤ in the appropriate direction), so we

need only check for being less than or equal to 0.

Similar modalities named □ appear in the work of Bizjak and Birkedal [2018] when

they deal with persistent predicates in bunched logic, and in the work of Choudhury and

Krishnaswami [2020] in a capability-aware calculus. Both of these papers, in common

with this thesis, aim to pick out the pure or safe objects, i.e. those not depending on

any external resources.

4.5 Representing existing linear and modal logics

A motivating reason to consider the system λR is that instances of it correspond to

previously studied systems. In this section, I present translations from λR to Dual

Intuitionistic Linear Logic [Barber, 1996] and the modal system of Pfenning and Davies

[1999], and vice versa. These translations are not mechanised, as part of the reason for

developing λR was to avoid mechanising these systems directly. We cannot prove that

the translations form an equivalence, because I have not written down an equational

theory for λR, but I expect this to be easy enough to do.

4.5.1 Dual Intuitionistic Linear Logic

Dual Intuitionistic Linear Logic is a particular formulation of intuitionistic linear logic

introduced by Barber [1996]. Its key feature, which simplifies the metatheory of linear

logic, is the use of separate contexts for linear and intuitionistic free variables. Here

I show that DILL is a fragment of the instantiation of λR at the linearity semiring

102

Chapter 4. Usage restriction via semirings

Int-Ax
γ,A; · ⊢ A

Lin-Ax
γ;A ⊢ A

I-I
γ; · ⊢ I

γ; δ1 ⊢ I γ; δ2 ⊢ A
I-E

γ; δ1, δ2 ⊢ A

γ; δ1 ⊢ A γ, δ2 ⊢ B
⊗-I

γ; δ1, δ2 ⊢ A⊗B

γ; δ1 ⊢ A⊗B γ; δ2, A,B ⊢ C
⊗-E

γ; δ1, δ2 ⊢ C

γ; δ, A ⊢ B
⊸-I

γ; δ ⊢ A⊸ B

γ; δ1 ⊢ A⊸ B γ; δ2 ⊢ A
⊸-E

γ; δ1, δ2 ⊢ B

γ; · ⊢ A
!-I

γ; · ⊢ !A

γ; δ1 ⊢ !A γ,A; δ2 ⊢ B
!-E

γ; δ1, δ2 ⊢ B
⊤-I

γ; δ ⊢ ⊤
γ; δ ⊢ A γ, δ ⊢ B

&-I
γ; δ ⊢ A&B

γ; δ ⊢ A0 &A1
&-Ei

γ; δ ⊢ Ai

γ; δ1 ⊢ 0
0-E

γ; δ1, δ2 ⊢ A

γ; δ ⊢ Ai ⊕-Ii
γ; δ ⊢ A0 ⊕A1

γ; δ1 ⊢ A⊕B γ; δ2, A ⊢ C γ; δ2, B ⊢ C
⊕-E

γ; δ1, δ2 ⊢ C

Figure 4.6: The rules of DILL, extended with additive connectives

{0, 1, ω}.

The types of DILL are the same as the types of λR, except for the restriction of

!r to just !ω. I will write the latter simply as ! when it appears in DILL. I add sums

and with-products to the calculus of Barber [1996], with the obvious rules (stated fully

in section 4.5.1). These additive type formers present no additional difficulty to the

translation.

Proposition 4.5.1 (DILL → λR). Given a DILL derivation of γ; δ ⊢ A, we can produce

a λR01ω derivation of ωγ, 1δ ⊢ A.

Proof. By induction on the derivation. We have ω ≤ 0, which allows us to discard

intuitionistic variables at the var rules, and both 1 ≤ 1 and ω ≤ 1, which allow us to

use both linear and intuitionistic variables.

Weakening is used when splitting linear variables between two premises. For exam-

ple, ⊗-I in DILL is as follows.

γ; δt ⊢ t : A γ; δu ⊢ u : B
⊗-I

γ; δt, δu ⊢ t⊗ u : A⊗B

103

Chapter 4. Usage restriction via semirings

DILL ↪→ λR01ω

Y 7→ ιY
I 7→ I

A⊗B 7→ A⊗B
A⊸ B 7→ A⊸ B

!A 7→ !ωA
0 7→ 0

A⊕B 7→ A⊕B
⊤ 7→ ⊤

A&B 7→ A&B

PD ↪→ λR01□

Y 7→ ιY
⊤ 7→ I

A ∧B 7→ A&B
A ⊃ B 7→ A⊸ B
□A 7→ !□A
⊥ 7→ 0

A ∨B 7→ A⊕B

Figure 4.7: Embedding of DILL and PD types into λR

From this, our new derivation is as follows.

iht

ωγ, 1δt ⊢ Mt : A
Weak

ωγ, 1δt, 0δu ⊢ Mt : A

ihu

ωγ, 1δu ⊢ Mu : A
Weak

ωγ, 0δt, 1δu ⊢ Mu : A
⊗-I

ωγ, 1δt, 1δu ⊢ (Mt,Mu) : A⊗B

When translating from λR to DILL, we first coerce the λR derivation to be in a

form easily amenable to translation into DILL. An example of a λR derivation with no

direct translation into DILL is the following. In DILL terms, the intuitionistic variable

of the conclusion becomes a linear variable in the premises. Such a move is admissible

in DILL, but does not come naturally.

Var
1A : x ⊢ A

Var
1A : x ⊢ A ω ≤ 1 + 1

⊗-I
ωA : x ⊢ A⊗A

To avoid such situations, and therefore manipulations on DILL derivations, I show

that all λR01ω derivations can be made in bottom-up style. In bottom-up style, the

algebraic facts we make use of are dictated by making most general choices based on

the conclusions of rules. Bottom-up style corresponds to a (non-deterministic) form of

usage checking, and the following lemma can be understood as saying that that form of

usage checking is sufficiently general.

104

Chapter 4. Usage restriction via semirings

Definition 4.5.2. A derivation is said to be 01ω-bottom-up if only the following facts

about addition and multiplication are used, and all proofs of inequalities not at leaves

are by reflexivity (i.e, not using the facts that ω ≤ 0 and ω ≤ 1).

+ 0 1 ω

0 0 1 -

1 1 - -

ω - - ω

∗ 0 1 ω

0 - - 0

1 0 1 ω

ω 0 - ω

Bottom-up style enforces that whenever we split a context into two (for example,

in the rule ⊗-I) all unused variables in the conclusion stay unused in the premises,

intuitionistic variables stay intuitionistic, and linear variables go either left or right.

Multiplication is only used in the rule !r-I, at which point both the result and left

argument are available. Here, the bottom-up style enforces that linear variables never

appear in the premise of !ω-I.

Lemma 4.5.3. Every λR01ω derivation can be translated into a bottom-up λR01ω

derivation.

Proof. By induction on the shape of the derivation. When we come across a non-

bottom-up use of addition, it must be that the corresponding variable in the conclusion

has annotation ω. By subusaging, we can give this variable annotation ω in the premises

too, before translating the subderivations to bottom-up style. A similar argument

applies to uses of multiplication, remembering that both the left argument and result

are fixed.

Proposition 4.5.4 (λR → DILL). Given a λR01ω derivation of ωγ, 1δ, 0θ ⊢ A which

contains only types expressible in DILL, we can produce a DILL derivation of γ; δ ⊢ A.

Proof. By induction on the derivation having been translated to bottom-up form.

In the case of var, all of the unused variables have annotation greater than 0, i.e.,

0 or ω. Those annotated 0 are absent from the DILL derivation, and those annotated

ω are in the intuitionistic context. The used variable is annotated either 1 or ω. In the

first case, we use Lin-Ax, and in the second case, Int-Ax.

All binding of variables in λR maps directly onto DILL.

105

Chapter 4. Usage restriction via semirings

hyp
γ; δ, A true ⊢ A true

hyp*
γ,A valid ; δ ⊢ A true

γ; δ, A true ⊢ B true
⊃I

γ; δ ⊢ A ⊃ B true

γ; δ ⊢ A ⊃ B true γ; δ ⊢ A true
⊃E

γ; δ ⊢ B true

γ; · ⊢ A true
□I

γ; δ ⊢ □A true

γ; δ ⊢ □A true γ,A valid ; δ ⊢ B true
□-E

γ; δ ⊢ B true
⊤-I

γ; δ ⊢ ⊤ true

γ; δ ⊢ A true γ, δ ⊢ B true
∧-I

γ; δ ⊢ A ∧B true

γ; δ ⊢ A0 ∧A1 true ∧-Ei
γ; δ ⊢ Ai true

γ; δ ⊢ ⊥ true
⊥-E

γ; δ ⊢ A true

γ; δ ⊢ Ai true ∨-Ii
γ; δ ⊢ A0 ∨A1 true

γ; δ ⊢ A ∨B true γ; δ, A ⊢ C true γ; δ,B ⊢ C true
∨-E

γ; δ ⊢ C true

Figure 4.8: The rules of PD, extended with several standard connectives

Because we translated to bottom-up form, additions, as seen in, for example, the ⊗-I

rule, can be handled straightforwardly. Any intuitionistic variables in the conclusion

correspond to intuitionistic variables in both premises. Any linear variables in the

conclusion correspond to a linear variable in exactly one of the premises, and is absent

in the other premise.

The only remaining rule is !r-I, of which we only cover !ω-I (the other two targeting

types not found in DILL). In this case, we know that every variable in the conclusion is

annotated either 0 or ω, and every variable in the premise is annotated the same way.

This corresponds exactly to the restrictions of DILL’s !-I.

4.5.2 Pfenning-Davies

The translation to and from the modal system of Pfenning and Davies [1999] (henceforth

PD) is similar to the translation to and from DILL. I present my variant of PD, again

adding some common connectives, in section 4.5.2 The main difference is the algebra at

which λR is instantiated.

106

Chapter 4. Usage restriction via semirings

Definition 4.5.5. Let 01□ denote the following semiring on the partially ordered set

{□ ◁ 1 ◁ 0}.

• 0 := 0.

• + is the meet (∧) according to the subusaging order.

• 1 := 1.

•

∗ 0 1 □

0 0 0 0

1 0 1 □

□ 0 □ □

The 0 annotation plays only a formal role in this example. Meanwhile, 1 and □

correspond to the judgement forms true and valid from PD. Addition being the meet

makes it idempotent. Furthermore, it gives us that 1 + □ = □ — if somewhere we

require an assumption to be true, and elsewhere require it to be valid, then ultimately

it must be valid (from which we can deduce that it is true). Multiplication is designed

to make !□ act like PD’s □. In particular, □ ∗□ = □ says that the valid assumptions

are available before and after !□-I, whereas □∗1 = □ says that valid assumptions in the

conclusion can be weakened to true assumptions in the premise. The latter fact does

not appear in PD, and will be excluded from bottom-up derivations.

To keep my notation consistent with that of DILL, I swap the roles of γ and δ in PD

compared to what they were in the original paper. Thus, my PD judgements are of the

form γ; δ ⊢ A true, where γ contains valid assumptions and δ contains true assumptions.

Proposition 4.5.6 (PD → λR). Given a PD derivation of γ; δ ⊢ t : A true, we can

produce a λR01□ derivation of □γ, 1δ ⊢ A.

Proof. By induction on the PD derivation. Most PD rules have direct λR counterparts,

noting that variables of any annotation can be discarded and duplicated because we

have both r ≤ 0 and r ≤ r + r for all r.

Care must be taken with the □I rule. We have, from the induction hypothesis, a

λR derivation of □γ ⊢ A. By !□-I, we have □γ ⊢ !□A. To get the desired conclusion,

107

Chapter 4. Usage restriction via semirings

we must use Weak to get □γ, 0δ ⊢ !□A, and then Subuse on the variables we just

introduced (noting that 1 ≤ 0) to get □γ, 1δ ⊢ !□A.

For translating from λR01□ to PD, I introduce a similar notion of bottom-up deriva-

tions as I did for DILL. Every λR01□ derivation can be translated into bottom-up style,

and then be directly translated into PD.

Definition 4.5.7. A derivation is said to be 01□-bottom-up if only the following facts

about addition and multiplication are used, and all proofs of inequalities not at leaves

are by reflexivity.

+ 0 1 □

0 0 - -

1 - 1 -

□ - - □

∗ 0 1 □

0 - - 0

1 0 1 □

□ 0 - □

Lemma 4.5.8. Every λR01□ derivation can be translated into a bottom-up λR01□

derivation.

Proof. By induction on the shape of the derivation. Given that addition is a meet,

it is clear that any non-bottom-up uses of addition come from one of the arguments

being greater than the result. Therefore, it is safe to make this argument smaller in

the corresponding premise (via subusaging), before translating that subderivation. For

multiplication, again, there is always a lesser value of the right argument that will take

us from a non-bottom-up fact to a bottom-up fact with the same left argument and

result.

Additionally, PD has no direct equivalents to the tensor unit and tensor products.

Therefore, I note that if the semiring of usage annotations satisfies some simple but

strong criteria (as 01□ does), then we can use the Cartesian unit and products in their

stead.

Lemma 4.5.9. If 1 ≤ 0 and 1 ≤ 1 + 1, then I is interderivable with ⊤, and for all A

and B, A⊗B is interderivable with A&B.

108

Chapter 4. Usage restriction via semirings

Proof. The following derivations suffice. I omit standard inequalities to emphasise those

which use this lemma’s assumptions.

⊤-I
1I ⊢ ⊤

(1) ≤ (0)
I-I

1⊤ ⊢ I

Var
1(A⊗B) ⊢ A⊗B

(0, 1, 1) ≤ (0, 1, 0)
Var

0(A⊗B), 1A, 1B ⊢ A

(0, 1, 1) ≤ (0, 0, 1)
Var

0(A⊗B), 1A, 1B ⊢ B
&-I

0(A⊗B), 1A, 1B ⊢ A&B
⊗-E

1(A⊗B) ⊢ A&B

(1) ≤ (1) + (1)

Var
1(A&B) ⊢ A&B

&-E0
1(A&B) ⊢ A

Var
1(A&B) ⊢ A&B

&-E1
1(A&B) ⊢ B

⊗-I
1(A&B) ⊢ A⊗B

Remark 4.5.10. By multiplying through on both sides, 1 ≤ 0 is equivalent to ∀x. x ≤ 0,

and 1 ≤ 1 + 1 is equivalent to ∀x. x ≤ x+ x.

Finally, I give the translation itself.

Proposition 4.5.11 (λR → PD). Given a λR01□ derivation of □γ, 1δ, 0θ ⊢ M : A

which does not contain types using !0 or !1, we can produce a PD derivation of γ; δ ⊢

A true.

Proof. We translate away tensor products and tensor units using lemma 4.5.9, and

translate the resulting derivation to bottom-up form. The proof proceeds by induction

on the resulting derivation in the obvious way.

As mentioned in section 4.4.1, the system of Abel and Bernardy [2020] is unable

to embed PD in this way, as it would prove □(A ∧ B) → □A ∧ □B, where PD and

λR do not. In fact, this example shows that, even when weakening and contraction

are admissible, with- and tensor-products are distinct in their system in the presence of

modalities.

109

Chapter 4. Usage restriction via semirings

4.6 Conclusion

In this chapter, I have presented the calculus λR, with particular focus on the posemir-

ing usage annotations. Posemirings are sufficient for many use cases, as shown by the

examples in this chapter. However, there are many more substructural disciplines in

the literature which cannot be expressed using posemirings.

An important point to note is that λR cannot be instantiated to become a bunched

logic, in the sense of O’Hearn and Pym [1999]. This is despite the use of the bunched

connectives in the definition of λR, and despite the formally tree-shaped contexts. How-

ever, the variable rule of λR essentially treats the variables in the context independently,

except for the individual checking of usage annotations on each variable. Therefore, we

cannot talk about more interesting spatial relationships between variables, as required

by bunched logic. This property also precludes us from capturing calculi without ex-

change (non-commutative logics), such as Lambek calculus [Lambek, 1958]. Fitch-style

systems [Borghuis, 1994] probably also are precluded similarly.

The work I present here has some methodological similarities with the earlier work

of Licata et al. [2017]. In that framework, one can provide a very precise mode theory,

expressing which structural rules are available, and from it get a sequent calculus with

cut-elimination. They encode many systems, including a non-associative logic (where

context are trees obeying no structural rules) and a bunched logic, and the framework is

probably expressive enough to encode all posemiring-based usage disciplines. However,

aside from the structural rules, the sequent calculus is fixed — there are two connectives:

F (internalising the left of the sequent, comparable to my !r1(−)⊗ · · · ⊗ !rn(−)) and U

(internalising the whole sequent, comparable to my !r1(−) ⊸ · · · ⊸ !rn(−) ⊸ (−)),

which have left and right rules, and then the only other rule is the variable rule. This

restriction is what allows the cut elimination theorem to be even plausible, but means

that other connectives, like additives and inductive types, and more exotic syntaxes,

like those I will present in section 6.3, would have to be developed from scratch.

The distinction between sharing and separating conjunction of premises naturally

falls out of the posemiring approach to usage restrictions. However, a similar distinction

110

Chapter 4. Usage restriction via semirings

also appears in other approaches to linearity, and perhaps in other substructural sys-

tems. Indeed, in the paper that inspired the bunched connectives [Rouvoet et al., 2020],

linearity is enforced in a similar style as in Yalla [Laurent, 2018], using lists which can

be split. It would be interesting to see future work on substructural systems work out

the appropriate premise connectives and define their systems from there, rather than

directly manipulating contexts. It may also be possible to see future work profitably ab-

stracting over the posemiring annotations, requiring only that contexts form something

like a commutative Rel-monoid supporting variable-binding and variable access.

111

Chapter 5

Renaming and substitution for λR

In chapter 4, I defined my calculus of interest λR. In this chapter, I develop the neces-

sary syntactic metatheory for specifying and implementing the substitution operation.

I follow the approach of section 2.3 using syntactic kits, but have to make significant

changes to the underlying notion of environment before doing so. I give and informally

motivate these changes to environments in section 5.1, and prove some properties of the

new definition in section 5.2. Finally, I apply these new environments to the syntax of

λR in section 5.3 to derive renaming and substitution operators.

5.1 What are linear renaming and substitution?

In an effort to reuse the syntactic kits and traversals approach of section 2.3.3, I will

derive the types of simultaneous renaming and simultaneous substitution from a generic

type of environments. To get a type of environments suitable for the usage-aware setting,

I first analyse intuitionistic environments (as introduced in section 2.3.3 definition Env),

distilling the easy-to-use functional definition (definition 5.1.1) into a more basic recur-

sive definition (definition 5.1.2). This recursive definition is easy to make usage-aware

(definition 5.1.3), which gives a basis from which to derive the function-based definition

I will take as primary (definition 5.1.7). The resulting definition makes explicit the role

of algebraic linearity in the metatheory of semiring-annotated calculi.

Recalling from section 2.3, we have the following definition of environments for

112

Chapter 5. Renaming and substitution for λR

simple types.

Definition 5.1.1 (Simple environment). For V : Ctx → Ty → Set, a V-environment

between simply typed contexts Γ and ∆ is a function, polymorphic in type A, from

variables of type A in ∆ to inhabitants of V ΓA. We write the type of such environments

as Γ
V

=⇒ ∆.

This definition is inadequate for λR. For example, suppose we have a term (M⊗N) :

Rγ ⊢ A⊗B and a substitution σ : Rγ
⊢

=⇒ R′δ. From the ⊗-I rule, we have M : Pγ ⊢ A

and N : Qγ ⊢ B for some P and Q such that R ≤ P +Q. We want to apply σ to the

subterms M and N , but this is impossible because their contexts are not Rγ, and we

have no way to adapt σ to these new contexts. Another instructive failure is the general

non-existence of identity environments, like a renaming of type 1A, 1B
⊐−

=⇒ 1A, 1B. We

do not have a variable of type 1A, 1B ⊐− A or, symmetrically, 1A, 1B ⊐− B, because,

in each case, there is one variable with annotation 1 which we have not actually used.

This example suggests that the values of a usage-aware environment should be derived

in different usage contexts, such as in 1A, 0B ⊐− A.

To see why this definition of environment works for simply typed λ-calculus but not

λR, let us look at an equivalent definition by recursion on the target context. This

recursive definition (definition 5.1.2), and particularly the case where ∆ is a concatena-

tion, makes it clear how Γ is being copied for use in each V-value. I take the equivalence

of definition 5.1.1 and definition 5.1.2 as obvious, because any function from variables

in ∆ can be defunctionalised as a data structure with the same shape as ∆.

Definition 5.1.2 (Simple recursive environment). A recursive V-environment between

simply typed contexts Γ and ∆ is defined by cases on the shape of ∆ (where Γ
V

=⇒R ∆

is the notation for the type of recursive environments for given V, Γ, and ∆):

• There is an environment ⟨⟩ : Γ V
=⇒R ·.

• For ρl : Γ
V

=⇒R ∆l and ρr : Γ
V

=⇒R ∆r, we have an environment ⟨ρl, ρr⟩ : Γ
V

=⇒R

∆l,∆r.

• For any value v : V ΓA, we have an environment ⟨v⟩ : Γ V
=⇒R A.

113

Chapter 5. Renaming and substitution for λR

I picture the sharing of Γ in definition 5.1.2 in the diagram below. The converg-

ing arrows from Γ to each ∆i represent the indices of values appearing in a simple

environment.

Γ ∆ := Γ

∆1

...

∆n

To account for usage, we must replace the simple repetition of Γ by repetition of

just the types γ and redistribution of the usage annotations P. Fortunately, our three

basic ways of sharing up usage vectors — zero, addition, and scaling — apply directly

to the three possible shapes of the target context — empty, concatenation, and a usage-

annotated singleton.

Definition 5.1.3 (Usage-annotated recursive environment). A recursive V-environment

between annotated contexts Γ and ∆ is defined by cases on the shape of ∆ (where

Γ
V

=⇒R ∆ is the notation for the type of recursive environments for given V, Γ, and ∆):

• There is one environment ⟨⟩ : Pγ
V

=⇒R · whenever P ≤ 0.

• For ρl : P lγ
V

=⇒R ∆l and ρr : Prγ
V

=⇒R ∆r, we have an environment ⟨ρl, ρr⟩ :

Pγ
V

=⇒R ∆l,∆r whenever P ≤ P l + Pr.

• For any value v : V P ′γ A, we have an environment ⟨v⟩ : Pγ
V

=⇒R rA whenever

P ≤ rP ′.

Example 5.1.4. Take R = (N,=, 0,+, 1,×), with the equality order chosen to avoid

any concerns around subsumption of annotations. Then, there is an intuitionistic re-

cursive environment (substitution) as follows, where y z is the application of y to z.

⟨⟨z⟩, ⟨y z⟩⟩ : (x : A, y : B → C, z : B)
⊢

=⇒R (B,C)

There is also a usage-aware recursive environment

⟨⟨z⟩, ⟨y z⟩⟩ : (0x : A, 2y : B⊸ C, 3z : B)
⊢

=⇒R (1B, 2C).

114

Chapter 5. Renaming and substitution for λR

The latter relies on the observations that
(
0 2 3

)
=

(
0 0 1

)
+
(
0 2 2

)
and, on

the right, that
(
0 2 2

)
= 2

(
0 1 1

)
. Then, we have 0x : A, 0y : B ⊸ C, 1z : B ⊢

z : B and 0x : A, 1y : B⊸ C, 1z : B ⊢ y z : C.

Example 5.1.5. Take R = (N,=, 0,+, 1,×). Then, there is an intuitionistic recursive

environment (renaming) as follows, where ⟨−,−,−⟩ abbreviates ⟨−, ⟨−,−⟩⟩ (matching

a similar abbreviation in the notation of contexts).

⟨⟨c⟩, ⟨a⟩, ⟨a⟩⟩ : (a : A, b : B, c : C, d : D)
⊐−

=⇒R (C,A,A).

There is also a usage-aware recursive environment

⟨⟨c⟩, ⟨a⟩, ⟨a⟩⟩ : (6a : A, 0b : B, 1c : C, 0d : D)
⊐−

=⇒R (1C, 2A, 4A).

Intuitively, this choice of usage annotations works because the 6 As on the left can be

divided into the 2 + 4 As on the right. Similarly, the 0 Bs and 0 Ds on the left can

be discarded to yield none on the right. Note that these divisions are directed, so we

cannot merge variables or introduce new variables on the right.

From example 5.1.4, we can see that the important usage vectors are the initial one(
0 2 3

)
and the usage vectors at which terms are derived:

(
0 0 1

)
and

(
0 1 1

)
.

I will call the latter the leaf vectors. The intermediate vector
(
0 2 2

)
can be worked

out from the leaf vector
(
0 1 1

)
and the scaling factor 2 found in the codomain

context 1B, 2C. Even when the ordering on annotations is given by a non-equivalence

relation ≤, there is a canonical least choice for all of the intermediate vectors, together

with a constraint that the entire linear combination of all the leaf vectors is less than

or equal to the initial usage vector. In symbols, we may let Ψ be the collection of

leaf vectors indexed by items in ∆, and state the constraint as P ≤
∑

(x:rA)∈∆ rΨx.

Seeing Ψ instead as a |∆| × |Γ| matrix, this constraint is P ≤ QΨ, using vector-matrix

multiplication. The resulting picture is below, showing P being split up into Ψ, and

then each V-value being constructed in a separate Ψiγ.

115

Chapter 5. Renaming and substitution for λR

Pγ Qδ := Pγ

Ψ1γ

...

Ψnγ

δ1

...

δn

where P ≤ QΨ

From this point, we can recover a functional-style definition of usage-aware environ-

ments. We choose our leaf vectors Ψ up-front, check the inequality, and then produce

a value at each leaf vector.

Definition 5.1.6 (Usage-annotated environment (tentative)). A V-environment be-

tween annotated contexts Γ and ∆ (written Pγ and Qδ, respectively, when convenient)

is a matrix Ψ : R|∆|×|Γ| such that P ≤ QΨ and for each (x : A) ∈ δ we have a value of

type V Ψxγ A.

I find this definition somewhat fiddly because of its reliance on low-level concepts

like non-usage-checked variables and rows of a matrix. We note that Ψx = ⟨x|Ψ, from

which point, requiring not just V Ψxγ A but rather V (Q′Ψ)γ A for any Q′ ≤ ⟨x| is

a minor change (and equivalent if V respects subusaging, which is practically always

the case). “An x such that (x : A) ∈ δ and Q′ ≤ ⟨x|Ψ” is exactly the definition of

Q′δ ⊐− A. I further regularise this clause by asking for a P ′ ≤ Q′Ψ rather than Q′Ψ

exactly, leaving us needing, for each P ′ and Q′ related in the same way (Ψ) as P and

Q, a function from Q′δ ⊐− A to V P ′γ A. Finally, I choose to switch from matrices and

matrix multiplication to linear maps and their actions, which are easier to work with.

All of these changes yield my primary definition of an environment for usage-annotated

calculi, which will be used for the rest of this chapter and in chapter 6.

Definition 5.1.7 (Usage-annotated environment). A V-environment between anno-

tated contexts Γ and ∆ (written Pγ and Qδ, respectively, when convenient) is a linear

116

Chapter 5. Renaming and substitution for λR

map Ψ : R|∆| → R|Γ| (written postfix) such that P ≤ QΨ and for each A, P ′, and Q′

such that P ′ ≤ Q′Ψ, a function from Q′δ ⊐− A to V P ′γ A.

Notation 5.1.8. When there are multiple environments in question and ρ is such an

environment, I use the notation ρ.Ψ to refer to Ψ. For example, P ≤ Q(ρ.Ψ). For the

action on variables, I write ρ(x), where x : Q′δ ⊐− A. The expression “ρ(x)” alone is

ambiguous because of the slack in the usage context P ′ of the resulting value. Therefore,

I will always make sure P ′ and Q′ clear when using this notation.

The following simple lemma shows that usage-annotated environments are, in a

sense, as good as simple environments on usage-checked variables. What usage-

annotated environments give us beyond simple environments is the ability to accommo-

date linear decompositions, in a way I will make precise in the next section.

Lemma 5.1.9. We can use an environment ρ : Γ
V

=⇒ ∆ to map a usage-checked variable

x : ∆ ⊐− A to a value of type V ΓA.

Proof. Let Γ = Pγ and ∆ = Qδ. Set P ′ := P and Q′ := Q, then P ≤ QΨ by the

constraint in ρ, so we can take the V-value ρ(x).

5.2 Properties of linear environments

I settle on definition 5.1.7, and prove various properties about it.

Lemma 5.2.1. Given an environment ρ : Pγ
V

=⇒ Qδ and a P ′ and a Q′ such that

P ′ ≤ Q′(ρ.Ψ), there is also an environment of type P ′γ
V

=⇒ Q′δ with the same linear

map and action on variables.

Proof. The only part of the definition of an environment dependent on P or Q is the

constraint P ≤ QΨ, which we are able to replace for P ′ and Q′.

When constructing an environment, we can do so by cases on the shape of the

target context. We can create an environment into the empty context when all usage

annotations on the source context are 0. We can create an environment into a concate-

nated context when we can additively split up the annotations of the source context

117

Chapter 5. Renaming and substitution for λR

and produce environments into both halves from the split sources. We can create an

environment into a singleton context when there is a context r times smaller than the

source context in which we can produce a value of the appropriate type.

Lemma 5.2.2. We can define all of the following equivalences for any values of the free

variables, assuming that V respects subusaging (i.e., P ′ ≤ P → V Pγ _ V P ′γ).

• I∗]
(
− V

=⇒ ·
)

•
(
− V

=⇒ ∆l

)
∗
(
− V

=⇒ ∆r

)
]

(
− V

=⇒ ∆l,∆r

)
• r · (V (−)A)]

(
− V

=⇒ rA
)

Proof. There are 6 cases to check. Throughout, we write Γ as Pγ and ∆ as Qδ when

convenient.

I∗(_) Let Ψ be the unique linear map out of the zero space. By assumption and

definition, P ≤ 0 = QΨ. There are no variables to act upon.

I∗(^) QΨ is an empty sum, so if P ≤ QΨ then P ≤ 0.

∗(_) Let the given environments be ρl : P lγ
V

=⇒ Qlδ and ρr : Prγ
V

=⇒ Qrδ, with

P ≤ P l + Pr. Define Ψ := [ρl.Ψ, ρr.Ψ], using the coproduct structure of the

concatenated vector space. We have P ≤ P l + Pr ≤ Ql(ρl.Ψ) + Qr(ρr.Ψ) =(
Ql Qr

)
Ψ. To act on variables, we are given P ′ ≤

(
Q′

l Q′
r

)
Ψ and Q′

lδl,Q′
rδr ⊐−

A. Without loss of generality, let us have Q′
lδl ⊐− A and Q′

r ≤ 0. Thus, P ′ ≤

Q′
l(ρl.Ψ) +Q′

r(ρr.Ψ) ≤ Q′
l(ρl.Ψ), and we can act on the variable using ρl.

∗(^) Let the unnamed context be Γ, also written Pγ. The linear map Ψ : R|∆l|+|∆r| →

R|Γ| splits into Ψl : R|∆l| → R|Γ| := ⟨id, 0⟩; Ψ and Ψr : R|∆r| → R|Γ| := ⟨0, id⟩; Ψ,

using the product structure of the concatenated vector space. Let P l := QlΨl and

Pr := QrΨr, by definition satisfying the required constraints. For the action

on variables, let us consider the left environment (with the right environment

following symmetrically). We are given P ′
l ≤ Q′

lΨl and Q′
lδl ⊐− A. From these, we

get P ′
l ≤ Q′

lΨl =
(
Q′

l 0
)
Ψ and Q′

lδl, 0δr ⊐− A. We can therefore act using the

original environment.

118

Chapter 5. Renaming and substitution for λR

·(_) Let P and P ′ be such that P ≤ rP ′ and let v : V P ′γ A. Let Ψ : R → R|γ| :=

r′ 7→ r′P ′. By definition and the previous assumption, we have P ≤ rΨ. When

acting on a variable, we have P ′′ ≤ r′Ψ and r′A ⊐− A′. The latter tells us that

A = A′ and r′ ≤ 1. Thus, P ′′ ≤ P ′. Therefore, by subusaging, we may produce a

value of type V P ′γ A, which we can take to be v.

·(^) Let us have an environment of type Pγ
V

=⇒ rA. We want to use its action on

variables to yield a value. To do this, we let P ′ := 1Ψ, and use this equation,

together with the fact that we have a variable of type 1A ⊐− A, to get a value of

type V P ′γ A. Furthermore, we derive P ≤ rΨ = rP ′, as required.

We could, as in definition 5.1.3, use these three clauses to define what an environ-

ment is. However, such a definition appears to require creative induction hypotheses in

the proving of simple lemmas, in contrast to the more direct proofs I achieve below using

definition 5.1.7. To take a concrete example, consider how we may construct an “iden-

tity” environment of type Γ V
=⇒ Γ, as in lemma 5.2.7 below. If we try to directly proceed

by induction on Γ, we get to the case where we are aiming to construct an environment

of type Pγ,Qδ
V

=⇒ Pγ,Qδ by constructing environments of types Pγ, 0δ
V

=⇒ Pγ and

0γ,Qδ
V

=⇒ Qδ. These are not identity environments, and thus do not come from the

hypotheses of a simple induction. In contrast, using definition 5.1.7, in lemma 5.2.7 we

are able to use the standard fact that there are identity linear maps, and on top of such

a map worry only about the value assigned to each variable.

One of the primary test cases for environments is simultaneous substitution, which

will look like the sub rule below. Note that we have taken V := ⊢ — i.e. that the values

yielded by the environment are terms, namely the terms to be substituted in for the

free variables of the derivation of ∆ ⊢ A.

Γ
⊢

=⇒ ∆ ∆ ⊢ A sub
Γ ⊢ A

The admissibility of substitution will be by induction on the derivation of ∆ ⊢ A,

so we will need to be able to adapt any environment we are given to work with any

119

Chapter 5. Renaming and substitution for λR

possible context of new premises yielded by the rules of figure 4.4. In the simply typed

case, the only change to the context we encountered was the binding of new variables.

With usage annotations, we furthermore have linear decompositions of the context,

necessitating changes to the environment whenever usage annotations change.

There are three kinds of linear decompositions we have to deal with: zero, addition,

and scaling; corresponding to bunched connectives I∗, ∗, and r · , respectively. In each

of these three cases, we have a simple preservation lemma, transforming an environment

of type Γ
V

=⇒ ∆ and a decomposition of ∆ into a decomposition of Γ and environments

for all of the decomposed fragments of Γ and ∆.

Lemma 5.2.3 (environments preserve zero). Given an environment ρ : Pγ
V

=⇒ Qδ

such that Q ≤ 0, we also have that P ≤ 0.

Proof. P ≤ QΨ ≤ 0Ψ = 0, by environment compatibility from ρ and monotonicity and

linearity of Ψ.

Lemma 5.2.4 (environments preserve addition). Given an environment ρ : Pγ
V

=⇒ Qδ

such that Q ≤ Ql+Qr for some Ql and Qr, we also have P l and Pr such that P ≤ P l+Pr

and there are environments ρl : P lγ
V

=⇒ Qlδ and ρr : Prγ
V

=⇒ Qrδ.

Proof. Let P l := QlΨ and Pr := QrΨ. Then, P ≤ QΨ ≤ (Ql +Qr)Ψ = QlΨ+QrΨ =

P l + Pr, satisfying the first condition. Because clearly P l ≤ QlΨ and Pr ≤ QrΨ,

applying lemma 5.2.1 to ρ gives us the required new environments ρl and ρr.

Lemma 5.2.5 (environments preserve scaling). Given an environment ρ : Pγ
V

=⇒ Qδ

such that Q ≤ rQ′ for some Q′, we also have a P ′ such that P ≤ rP ′ and there is an

environment ρ′ : P ′γ
V

=⇒ Q′δ.

Proof. Let P ′ := Q′Ψ. Then, P ≤ QΨ ≤ (rQ′)Ψ = r(Q′Ψ) = rP ′, satisfying the first

condition. Because clearly P ′ ≤ Q′Ψ, applying lemma 5.2.1 to ρ gives us the required

new environment ρ′.

The final change environments need to preserve is the binding of new free variables.

In section 2.3.3, we had the operation bindEnv for this purpose in the intuitionistic

120

Chapter 5. Renaming and substitution for λR

setting. There, we relied on V supporting a map from ∋-variables and admitting weak-

ening. In the usage-annotated setting, the former requirement is updated to having a

map from usage-checked ⊐−-variables. As for the latter requirement, it turns out that

we only need V to admit weakening by 0-annotated variables, which is much more rea-

sonable than general weakening. Lemma 5.2.6 adapts bindEnv for the usage-annotated

setting.

Lemma 5.2.6 (bindEnv). Given functions ↙k : ∀Γ,R, θ. R ≤ 0 → V Γ _ V (Γ,Rθ)

and vr : ⊐− _ V, we can turn an environment of type Γ
V

=⇒ ∆ into an environment of

type Γ,Θ
V

=⇒ ∆,Θ for any context Θ.

Proof. Let Pγ := Γ, Qδ := ∆, and Rθ := Θ. Let the new linear map Ψ′ :

R|∆|+|Θ| → R|Γ|+|Θ| be Ψ ⊕ I. That is, in block matrix notation,

Ψ 0

0 I

. Check-

ing that this linear map fits, we have
(
P R

)
≤

(
QΨ RI

)
=

(
Q R

)
(Ψ⊕ I).

For the action on variables, we are given vectors P ′, R′
P , Q′, and R′

Q such that(
P ′ R′

P

)
≤

(
Q′ R′

Q

)
(Ψ⊕ I) and we have a variable of type Q′δ,R′

Qθ ⊐− A for

some type A. The constraint on the new vectors reduces to P ′ ≤ Q′Ψ and R′
P ≤ R′

Q.

From the variable we either have a variable x in δ with Q′ ≤ ⟨x| and R′
Q ≤ 0, or a

variable y in θ with Q′ ≤ 0 and R′
Q ≤ ⟨y|. In the former case, the action of the original

environment on x gives us a V-value in P ′γ, and the 0-weakening principle ↙k, noting

that R′
P ≤ R′

Q ≤ 0, gives us a V-value in P ′γ,R′
Pθ. In the latter case, we have

that
(
P ′ R′

P

)
≤

(
Q′Ψ R′

Q

)
≤

(
0Ψ ⟨y|

)
=

(
0 ⟨y|

)
= ⟨↘y|, so y also serves

as a usage-checked variable in P ′γ,R′
Pθ. From this usage-checked variable, we get a

V-value in the same context using vr.

I put together the preceding pieces to give a syntactic traversal operation over λR

in the following section. For the rest of this section, I observe some more constructions

purely on environments — in particular, composition of environments given certain

assumptions about the families of values.

Following Altenkirch et al. [2015], we expect (intuitionistic) STλC syntax to form a

relative monad over ∋ seen as a functor from the category of contexts under renaming

121

Chapter 5. Renaming and substitution for λR

to the functor category [Ty, Set], where Ty is the discrete category of STλC types.

Notice that, given F,G : [Ty, Set], a morphism from F to G is a function of type

F _ G (with naturality being trivial). Therefore, we expect a relative monad, given

as a Kleisli triple, to have a unit ηΓ : Γ ∋ (−) _ Γ ⊢ (−) given by the variable rule,

and a Kleisli extension operator ∗
Γ,∆ : (Γ ∋ (−) _ ∆ ⊢ (−)) → (Γ ⊢ (−) _ ∆ ⊢ (−))

given by substitution. Composition of substitutions falls out of this framework as Kleisli

composition. However, in the usage-aware case, substitution needs not just a mapping

of variables f : Γ ⊐− (−) _ ∆ ⊢ (−), but rather an environment ρ : ∆
⊢

=⇒ Γ, as we have

already discussed. It therefore makes sense for our replacement for the Kleisli extension

operator to similarly take an environment rather than a simple variable mapping.

Lemma 5.2.8 below amounts to deriving a modified notion of Kleisli composition

from a modified Kleisli extension. Additionally, lemma 5.2.7 is required to turn a

monadic unit into an identity environment. Both lemmas are stated in terms of general

U/V/W-environments, with some specific examples (e.g. for renaming and substitution)

below them.

Lemma 5.2.7 (Identity environment). Given a function

vrΓ′ : Γ′ ⊐− (−) _ V Γ′

for any Γ we have an environment id : Γ
V

=⇒ Γ.

Proof. Let Γ = Pγ. Let Ψ be the identity map, which clearly satisfies P ≤ PΨ. When

acting on a variable, the inequality P ′ ≤ Q′Ψ means that P ′ ≤ Q′. We are given a

variable of type Q′γ ⊐− A, which we can coerce to a variable of type P ′γ ⊐− A, upon

which we apply vr to get the required value of type V P ′γ A.

Lemma 5.2.8 (Composition of environments). Given a function

liftΓ′,∆′ : Γ′ U
=⇒ ∆′ → V∆′ _ W Γ′

we can compose environments ρ : Γ
U

=⇒ ∆ and σ : ∆
V

=⇒ Θ into an environment

ρ ≫ σ : Γ
W
=⇒ Θ.

122

Chapter 5. Renaming and substitution for λR

Proof. Let Γ = Pγ, ∆ = Qδ, and Θ = Rθ. Take Ψ to be the composition (σ.Ψ)(ρ.Ψ),

noting that P ≤ Q(ρ.Ψ) ≤ (R(σ.Ψ))(ρ.Ψ) = RΨ thanks to the inequalities yielded

by σ and ρ. When acting on a variable, we are given P ′ ≤ R′Ψ and a variable v :

R′θ ⊐− A, and want a value of type WP ′γ A. Let Q′ := R′(σ.Ψ), with inequality

Q′ ≤ R′(σ.Ψ) giving us a value σ(v) : V Q′δ A. We wish to apply lift to σ(v) with

Γ′ := P ′γ and ∆′ := Q′δ to complete the construction of the W-value. To do this, we

need an environment of type P ′γ
U

=⇒ Q′δ, which we can get from ρ using lemma 5.2.1,

noting that P ′ ≤ R′(σ.Ψ)(ρ.Ψ) = Q′(ρ.Ψ).

We can derive the following corollaries as instances of environment composition.

Corollary 5.2.9 (Composition of renamings). Given renamings ρ : Γ
⊐−

=⇒ ∆ and

σ : ∆
⊐−

=⇒ Θ, we can form their composite ρ;σ : Γ
⊐−

=⇒ Θ.

Proof. Take U = V = W = ⊐− in lemma 5.2.8. Then let lift ρ x := ρ(x).

Corollary 5.2.10 (Post-composition with a renaming). Given an environment ρ :

Γ
U

=⇒ ∆ and a renaming σ : ∆
⊐−

=⇒ Θ, we can form their composite ρ;σ : Γ
U

=⇒ Θ.

Proof. As in corollary 5.2.9.

Corollary 5.2.11 (Pointwise renaming of an environment). If
V

respects renaming,

then so does V
=⇒ (on the left).

Proof. Suppose we have ρ : Γ
⊐−

=⇒ ∆ and σ : ∆
V

=⇒ Θ. We want to compose these via

lemma 5.2.8 with U = ⊐− and V = W. The function lift is given exactly by the fact that

V respects renaming.

Corollary 5.2.12 (Composition of substitutions). Given substitutions ρ : Γ
⊢

=⇒ ∆ and

σ : ∆
⊢

=⇒ Θ, we can form their composite ρ;σ : Γ
⊢

=⇒ Θ.

Proof. Take U = V = W = ⊢ in lemma 5.2.8. Then, lift is given by the action of a

substitution on a term (see sub in the following section).

Corollary 5.2.13 (Composing semantics with substitution). If we have a semantics

(in the sense of section 2.4 and section 7.4) from U to W, then from an environment

ρ : Γ
U

=⇒ ∆ and a substitution σ : ∆
⊢

=⇒ Θ, we can form the composite ρ;σ : Γ
W
=⇒ Θ.

123

Chapter 5. Renaming and substitution for λR

5.3 Substitution is admissible in λR

I can now show that, using the notion of environment derived in section 5.1, we can

replicate the Agda proofs from section 2.3.3 in the usage-aware setting of λR. From sec-

tion 5.2, we know that environments are preserved under all syntax-forming operations:

zero, addition, scaling, and binding. What is left is to show how these properties are

deployed, and also how to go on and prove the admissibility of simultaneous renaming,

simultaneous substitution, and then single substitution.

There are a few notational changes necessary in the Agda code, compared to the

typeset mathematics above. Usage vectors, elsewhere called P, Q, and R are rendered

as P, Q, and R, respectively. Usage contexts and typing contexts are tied together with

the ctx constructor, rather than simple juxtaposition. Environments, elsewhere notated

Γ
V

=⇒ ∆, are rendered as [V] Γ ⇒e ∆.

We start with a slightly modified definition of Kit. We saw in lemma 5.2.6 that in

the usage-annotated context, we restrict weakening of V-values to just 0-use variables.

Meanwhile, the function vr, also seen in lemma 5.2.6, maps usage-checked variables to

V-values, and the function tm, used to coerce V -values yielded by the environment into

terms, stays the same. I state weakening in a slightly different way than previously, so

as to help unification against a known result type (avoiding the problem described by

McBride [2012] as green slime). The type Weakening V can be read as saying that, for

any context Pγ of shape s+ t, if the right of P is below 0, then a value in the left part

of Pγ weakens to a value in the whole of Pγ.

Weakening : ∀ {v} {A : Set} → (Ctx → A → Set v) → Set v

Weakening V =

∀ {s t P} {γ : Vector Ty (s <+> t)} → P ◦ ↘ ≤* 0* →

V (ctx (P ◦ ↙) (γ ◦ ↙)) _ V (ctx P γ)

record Kit (V : Ctx → Ty → Set) : Set where

constructor kit

field

↙k : Weakening V

124

Chapter 5. Renaming and substitution for λR

vr : _⊐−_ _ V

tm : V _ _⊢_

To demonstrate the important points succinctly, I cut λR down to just the !r-

fragment. The introduction rule and pattern-matching eliminator feature scaling, ad-

dition, and variable binding, missing out only on sharing (which is trivial) and zero

(which is simpler than, and analogous to, addition). The resulting type of well typed

terms is below.

Bind : Ctx → (Ctx → Set) → (Ctx → Set)

Bind ∆ T Γ = T (Γ ++c ∆)

data _⊢_ : Ctx → Ty → Set where

var : _⊐−_ _ _⊢_

!-I : ∀ {r A} → r · (_⊢ A) _ _⊢ ‘ ! r A

!-E : ∀ {r A C} → (_⊢ ‘ ! r A) ∗ Bind [r • A]c (_⊢ C) _ _⊢ C

Given a Kit V, lemma 5.2.6 gives a function with the following type.

bindEnv : ∀ {Γ ∆ Θ} → [V] Γ ⇒e ∆ → [V] Γ ++c Θ ⇒e ∆ ++c Θ

Given bindEnv (lemma 5.2.6), env-+ (lemma 5.2.4), and env-* (lemma 5.2.5), we

can reproduce the syntactic traversal trav. With all these lemmas in place, writing trav

becomes routine. When processing a rule, we work our way up through the premise

connectives, applying env-* wherever we see a ·c, env-+ wherever we see a ∗c, and bindEnv

wherever we see a Bind. We then use whatever environments (with names beginning

with ρ) and whatever usage vector splitting facts (with names beginning with sp) come

out of this process to recursively traverse the subterms and recombine the results.

trav : ∀ {Γ ∆ A} → [V] Γ ⇒e ∆ → ∆ ⊢ A → Γ ⊢ A

trav ρ (var x) = tm (ρ .lookup (ρ .fit-here) x)

trav ρ (!-I (⟨ sp* ⟩·c M)) =

let sp*′ , ρ′ = env-* (ρ , sp*) in

!-I (⟨ sp*′ ⟩·c (trav ρ′ M))

125

Chapter 5. Renaming and substitution for λR

trav ρ (!-E (M ∗c⟨ sp+ ⟩ N)) =

let ρl ↘, sp+′ ,↙ ρr = env-+ (ρ , sp+) in

!-E (trav ρl M ∗c⟨ sp+′ ⟩ trav (bindEnv ρr) N)

Instantiating the generic syntactic traversal trav to renaming looks just like it did

in the intuitionistic case. I have consistently replaced intuitionistic variables by linear

variables, so id and var still work to embed variables into variables and terms, respec-

tively. Weakening for variables ↙v (not pictured) has been updated to note that, for

P ≤ ⟨x| and R ≤ 0, we also have
(
P R

)
≤ ⟨↙x|.

⊐−-kit : Kit _⊐−_

⊐−-kit = kit ↙v id var

ren : ∀ {Γ ∆ A} → [_⊐−_] Γ ⇒e ∆ → ∆ ⊢ A → Γ ⊢ A

ren = trav ⊐−-kit

In the intuitionistic case, environments were just functions, so we passed the variable

weakening function ↙v to the function ren to yield a term weakening function. However,

a usage-aware environment is a function packed together with usage distribution data.

As such, we must make an environment version of ↙v. I start with a general lemma

↙ˆEnv, stating that if V supports weakening, then so do V-environments (in their

domain context). This lemma then specialises to variables, with the identity renaming

idˆEnv on the left part of the context and the proof R0 that the right part of the context

is below 0 combining to give the desired weakening environment.

↙^Env : {V : Ctx → Ty → Set} → Weakening V → Weakening [V]_⇒e_

↙^Env ↙^V R0 ρ .Ψ = [ρ .Ψ | 0R]R

↙^Env ↙^V R0 ρ .fit-here = ρ .fit-here , ≤*→0* R0

↙^Env ↙^V R0 ρ .lookup (r , sp0) v = ↙^V (0*→≤* sp0) (ρ .lookup r v)

↙v-env :

∀ {s t P} {γ : Vector Ty (s <+> t)} → P ◦ ↘ ≤* 0* →

[_⊐−_] ctx P γ ⇒e ctx (P ◦ ↙) (γ ◦ ↙)

↙v-env R0 = ↙^Env ↙v R0 id^Env

126

Chapter 5. Renaming and substitution for λR

This is what we need to instantiate trav for substitution. As a reminder, I also give

the type of sub in rule form.

⊢-kit : Kit _⊢_

⊢-kit = kit (λ R0 → ren (↙v-env R0)) var id

sub : ∀ {Γ ∆ A} → [_⊢_] Γ ⇒e ∆ → ∆ ⊢ A → Γ ⊢ A

sub = trav ⊢-kit

Γ
⊢

=⇒ ∆ ∆ ⊢ B sub
Γ ⊢ B

Finally, the simultaneous substitution sub specialises to single substitution.

Corollary 5.3.1 (Single substitution). The following equivalent rules are admissible.

R ≤ rP +Q Pγ ⊢ A Qγ, rA ⊢ B

Rγ ⊢ B

r · (⊢ A) ∗ rA ⊢ B

⊢ B

Proof. It is enough to construct a substitution of type Rγ
⊢

=⇒ Qγ, rA. To do this,

we use lemma 5.2.2 cases ∗(_) and ·(_) on inequalities R ≤ Q + rP and rP ≤ rP

respectively to leave us needing a substitution of type Qγ
⊢

=⇒ Qγ and a term of type

Pγ ⊢ A. For the substitution, we give the identity substitution (lemma 5.2.7), and we

have the term as a hypothesis.

5.4 Comparison with Petricek’s substitution lemma

A similar substitution lemma to the one presented in this chapter appears in the PhD

thesis of Petricek [2017, p. 138] under the name multi-nary substitution. In my notation,

Petricek’s substitution rule looks like the following, up to permutation of the contexts

containing Γ. Note that if ∆ = Qδ, then r∆ denotes the context (rQ)δ. This rule is

essentially an iterated version of the standard linear single substitution principle, and

is used by Petricek as a strengthened induction hypothesis required to derive single

substitution.

∆1 ⊢ A1 · · · ∆n ⊢ An Γ, r1A1, . . . , rnAn ⊢ B

Γ, r1∆1, . . . , rn∆n ⊢ B

127

Chapter 5. Renaming and substitution for λR

We can derive Petricek-style multi-nary substitution as a corollary of my simulta-

neous substitution, using reasoning similar to that of corollary 5.3.1.

Corollary 5.4.1. Petricek’s multi-nary substitution, as stated above, is admissible in

λR.

Proof. It is enough to provide a substitution of type

Γ, r1∆1, . . . , rn∆n
⊢

=⇒ Γ, r1A1, . . . , rnAn.

To do this, we use lemma 5.2.2 repeatedly, leaving us needing a substitution of type

Γ, 0∆1, . . . , 0∆n
⊢

=⇒ Γ and terms of types

0γ,∆1, 0δ2, . . . , 0δn−1, 0δn ⊢ A1

...

0γ, 0δ1, 0δ2, . . . , 0δn−1,∆n ⊢ An.

The identity substitution and weakening by 0-annotated variables is enough to make

these requirements line up with the given hypotheses.

My substitution principle is stronger than Petricek’s. Where Petricek requires that

distinct variables be available for each hypothesis, I allow for separation of uses via

addition of contexts. Below is a prototypical example.

Example 5.4.2. Let R := (N,=, 0,+, 1,×), the exact usage-counting posemiring.

Then, we can construct a substitution ρ : 2A
⊢

=⇒ 1A, 1A, yielding a transformation

of terms of the following form:
1A, 1A ⊢ B

2A ⊢ B
.

To construct ρ, we use lemma 5.2.2 case ∗(_), using the fact that 2 ≤ 1 + 1. From

there, two identity substitutions suffice. The action of ρ on terms is to merge the two

variables into one. Note that a renaming, rather than a substitution, would also suffice.

Most notably, my (single) substitution principle more naturally fits the requirement

we would have for the reduct of the β-rule for functions in λR, whereas Petricek’s

128

Chapter 5. Renaming and substitution for λR

substitution principle would need some additional transformation for it to fit properly.

This comes from the fact that the λR function application rule introduces an algebraic

(+) separation between its premises, whereas Petricek’s substitution principle separates

premises only via concatenation.

5.5 Conclusion

In this and the preceding chapter, I have developed a discipline for specifying the syntax

of linear and modal type systems, and furthermore developing the syntactic metatheory

of those type systems. All of these are based on semirings, and the linear algebra arising

from considering a usage context full of semiring elements as a vector.

These developments can be seen in retrospect as a generalisation of the methods

explained in chapter 2. In terms of premise connectives in the syntactic rules, we have

generalised from just {1̇, ×̇} to {1̇, ×̇, I∗, ∗, r · ,□0+}, maintaining our ability to keep

the context implicit. Similarly to how rule premises can require separation of usage

annotations, our new environments can require such a separation between their entries

thanks to the linear map they now contain. I have generalised the key property of a kit

from arbitrary weakening to weakening by 0-annotated variables, and using that have

produced a substitution operation based on the same principles as that from section 2.3.

Having generalised all of the components — namely the contexts, the syntax, and

the notion of environment — the type of the substitution operation looks the same as it

did for intuitionistic STλC. Being able to maintain this uniformity is a key step towards

generalising the rest of chapter 2 (i.e., sections 2.4 and 2.5), as I do in chapter 6.

Future work may want to extend the work of this chapter, in which case there are

some unanswered questions. Principal among these, in my mind, is dealing with equiva-

lence/equality of environments. We want to talk about equality of environments for two

related purposes. The most immediate is that we want to develop the equational the-

ory of renaming and substitution — for example, when we use lemma 5.2.8 to compose

substitutions, we expect that composition to be associative and unital (with respect

to lemma 5.2.7). These equations of substitutions should yield equations on terms in

which such substitutions have been applied. Slightly more abstractly, I would like to

129

Chapter 5. Renaming and substitution for λR

develop a theory of quantitative multicategories, in which multimorphisms have in their

domain a list of objects paired with usage annotations. I would hope for λR types

and terms to give an example quantitative multicategory, analogously to how Lambek

calculus gives an example of an ordinary multicategory and the simply typed λ-calculus

gives an example of a Cartesian multicategory.

Intuitionistic environments ρ, σ : Γ
V

=⇒ ∆ are equal if and only if, for each type A

and each variable x : ∆ ∋ A, we have ρ x = σ x. This follows from what we expect

of equality of functions (function extensionality). Usage-aware environments, on the

other hand, are Σ-types — a way of dividing up the usage annotations of Γ, and then a

function producing V-values whose usage annotations come from that division. Equality

of Σ-types is tricky — we need to equate the first components, then rewrite the types of

the second components by this equation before equating them. In practice, the equations

rewriting other equations build up so much that I have given up on a first effort to give

a treatment of the equational theory of substitutions. Note that recursively defined

environments (definition 5.1.3) are also Σ-types in cases where ∆ is a concatenation of

contexts, so that definition does not clearly help.

I hope that people working on substructural type systems in the future can take

inspiration from the process laid out in section 5.1 when working out the appropriate

notion of environment for their discipline. Particularly, definition 5.1.3 (the recursive

definition) should serve as a specification, if not the actual implementation, when coming

across a new substructural discipline. As for the progression to definition 5.1.7, this

appears to arise from the fact that the quantitative usage information is a refinement

of the intuitionistic De Bruijn index-based syntax.

130

Chapter 6

Generic usage-annotated syntax

In chapter 4, we saw how to use parametrisation over a partially ordered semiring

to recreate a range of usage-aware calculi. However, λR, with its fixed set of type

formers and syntactic forms, is a long way from capturing the full range of linear-like

programming languages studied in the literature and required in practice.

In this chapter, I take the framework for typed syntaxes with binding developed

by Allais et al. [2021] and apply the principles we discovered in chapter 4 to yield

a framework for defining calculi with semiring-based usage restrictions on variables.

Syntactically, I claim that this framework ranges over all finitary variable-based simply

typed semiring-annotated calculi, with justification by comparison to the framework of

Allais et al. [2021] and some novel examples in section 6.3.

The work in this chapter is fully mechanised in Agda, which allows me to be precise

about the various levels of domain-specific languages which appear. Most of the code

and text of this chapter, chapter 7, and the examples in sections 8.1 and 8.3 is adapted

from Wood and Atkey [2022].

The aim of this chapter is to produce a domain-specific language of syntax de-

scriptions. One may also use the terminology “universe” in place of “domain-specific

language”, alluding to the universe pattern common in dependently typed program-

ming [Benke et al., 2003]. A syntax description is essentially a concise, high-level rep-

resentation of a type system’s syntactic rules. The information contained in a syntax

description is comparable to what is written (informally) in figure 4.4. The key features

131

Chapter 6. Generic usage-annotated syntax

allowing these descriptions to capture semiring-annotated calculi are the distinction

between sharing (×̇) and separating (∗) conjunction of premises, modal scaling by a

semiring element (·), and the inclusion of semiring annotations on newly bound vari-

ables.

6.1 Descriptions of Systems

I introduce syntax descriptions in three layers: System, Rule, and Premises. A type

System is made up of multiple Rules. Each Rule comprises a Premises and a conclusion

type. We assume that there is a Ty : Set of types for the system in scope.

The Premise data type describes premises of rules, using the bunched connectives

from figure 4.3. A single premise is introduced by the ⟨_‘⊢_⟩ constructor. This allows

binding of additional variables ∆ (with specified types and usage annotations) and the

specification of a conclusion type A for this premise. The remaining constructors are

descriptions for the bunched connectives.

data Premises : Set where

⟨_‘⊢_⟩ : (∆ : Ctx) (A : Ty) → Premises

‘1̇ : Premises; _‘×̇_ : (p q : Premises) → Premises

‘I∗ : Premises; _‘∗_ : (p q : Premises) → Premises

‘· : (r : Ann) (p : Premises) → Premises

A Rule is a pair of some Premises and a conclusion. I suggestively use a quoted

version of the “universal entailment” arrow _, the unquoted version of which interprets

the horizontal line in a traditionally presented typing rule.

record Rule : Set where

constructor _‘__

field premises : Premises; conclusion : Ty

Finally, a System consists of a set of rule labels (i.e., constructor names), and for each

label a description of the corresponding rule. We use ▷ as infix notation for systems to

associate the label set with the rules.

132

Chapter 6. Generic usage-annotated syntax

record System : Set1 where

constructor _▷_

field Label : Set; rules : (l : Label) → Rule

As an example, we transcribe a fragment of λR (as defined in figure 4.2 and fig-

ure 4.4) into a description. We give the set of types of this system as a data type Ty

(together with a base type ι). We assume that there is a posemiring Ann in scope for

the annotations. There is one label for each instantiation of a logical rule, but the labels

contain no further information about subterms or restrictions on the context. This will

be provided when we associate labels with Rules in a System.

data Ty : Set where

ι : Ty

⊸ _⊕_ : (A B : Ty) → Ty

! : (r : Ann) (A : Ty) → Ty

data Hand : Set where ll rr : Hand

data ‘λR : Set where

‘⊸I ‘⊸E : (A B : Ty) → ‘λR

‘⊕I : (i : Hand) (A B : Ty) → ‘λR

‘⊕E : (A B C : Ty) → ‘λR

‘!I : (r : Ann) (A : Ty) → ‘λR

‘!E : (r : Ann) (A C : Ty) → ‘λR

To build a system, we associate with each label a rule:

λR : System

λR = ‘λR ▷ λ where

(‘⊸I A B) → ⟨ [1# • A]c ‘⊢ B ⟩ ‘_ (A⊸ B)

(‘⊸E A B) → (⟨ []c ‘⊢ A⊸ B ⟩ ‘∗ ⟨ []c ‘⊢ A ⟩) ‘_ B

(‘ !I r A) → (r ‘· ⟨ []c ‘⊢ A ⟩) ‘_ (! r A)

(‘ !E r A C) → (⟨ []c ‘⊢ ! r A ⟩ ‘∗ ⟨ [r • A]c ‘⊢ C ⟩) ‘_ C

(‘⊕I ll A B) → ⟨ []c ‘⊢ A ⟩ ‘_ (A ⊕ B)

(‘⊕I rr A B) → ⟨ []c ‘⊢ B ⟩ ‘_ (A ⊕ B)

(‘⊕E A B C) →

⟨ []c ‘⊢ A ⊕ B ⟩ ‘∗ (⟨ [1# • A]c ‘⊢ C ⟩ ‘×̇ ⟨ [1# • B]c ‘⊢ C ⟩) ‘_ C

Compared to figure 4.4, modulo the Agda notation, we can see that the fundamental

133

Chapter 6. Generic usage-annotated syntax

structure has been preserved: The rules match one-to-one, and the bunched premises

are the same. A major difference is that we do not include a counterpart to the var rule

in a System. Variables are common to all the systems representable in our framework.

6.2 Terms of a System

The next thing we want to do is to build terms in the described type system. The

following definitions are useful for talking about types indexed over contexts, judgement

forms, and judgement forms admitting newly bound variables, respectively.

OpenType : ∀ ℓ → Set (suc ℓ)

OpenType ℓ = Ctx → Set ℓ

OpenFam : ∀ ℓ → Set (suc ℓ)

OpenFam ℓ = Ctx → Ty → Set ℓ

ExtOpenFam : ∀ ℓ → Set (suc ℓ)

ExtOpenFam ℓ = Ctx → OpenFam ℓ

To specify the meaning of descriptions, we assume some X : ExtOpenFam _, over

which we form one layer of syntax, using the function J_Kp that interprets Premises

defined below. The first argument to X is the new variables bound by this layer of

syntax, as exemplified in the first clause of J_Kp. The second argument is the context

containing the variables being carried over from the previous layer. Notice that this

is not, in general, the same as the context from the previous layer, because the usage

annotations may have been changed by connectives like _‘∗_ and _‘·_. The third

argument is the type of subterm required.

The remainder of the clauses of J_Kp are given by the bunched connectives, as listed

below.

J_Kp : Premises → ExtOpenFam ℓ → OpenType ℓ

J ⟨ ∆ ‘⊢ A ⟩ Kp X Γ = X ∆ Γ A

J ‘1̇ Kp X = 1̇; J p ‘×̇ q Kp X = J p Kp X ×̇ J q Kp X

134

Chapter 6. Generic usage-annotated syntax

J ‘I∗ Kp X = I∗; J p ‘∗ q Kp X = J p Kp X ∗ J q Kp X

J r ‘· p Kp X = r · J p Kp X

The interpretation of a Rule checks that the rule targets the desired type and then

interprets the rule’s premises ps. Notice that the interpretation of the premises is

independent of the conclusion of the rule, which accounts for the use of OpenType in

J_Kp versus OpenFam in J_Kr.

J_Kr : Rule → ExtOpenFam ℓ → OpenFam ℓ

J ps ‘_ A′ Kr X Γ A = A′ ≡ A × J ps Kp X Γ

The interpretation of a System is to choose a rule label l from L and interpret the

corresponding rule rs l in the same context and for the same conclusion.

J_Ks : System → ExtOpenFam ℓ → OpenFam ℓ

J L ▷ rs Ks X Γ A = Σ[l ∈ L] J rs l Kr X Γ A

The most obvious way to make an X : ExtOpenFam _ is to use some existing Open-

Fam on an extended context. I define Scope to do this: take the new variables ∆,

concatenate them onto the existing context Γ, and pass the extended context onto the

judgement T.

Scope : ∀ {ℓ} → OpenFam ℓ → ExtOpenFam ℓ

Scope T ∆ Γ A = T (Γ ++c ∆) A

I use Scope to deal with new variables in syntax. Terms resemble the free monad

over a layer-of-syntax functor, though that picture is complicated by variable binding.

A term is either a variable or a use of a logical rule together with terms for each of the

required subterms. The Size argument sz is a use of Agda’s sized types to record that

subterms are smaller than the surrounding term for the termination checker.

data [_,_]_⊢_ (d : System) : Size → OpenFam 0ℓ where

‘var : _⊐−_ _ [d , ↑ sz]_⊢_

‘con : J d Ks (Scope [d , sz]_⊢_) _ [d , ↑ sz]_⊢_

135

Chapter 6. Generic usage-annotated syntax

Terms in this data type are difficult to write by hand, due to the need for proofs that

the usage contexts are handled correctly. For example, the following term is needed to

show that, in the {0, 1, ω} (linearity) posemiring of example 4.1.3, !ω forms a comonad.

Pattern synonyms ⊸I, !E′, and !I′ stand for applications of ‘con, with the latter two

taking explicit usage contexts and proofs. On concrete posemirings (as in this example),

unification is particularly poor at inferring the usage contexts from the proofs because

addition and multiplication are no longer (definitionally) injective. The function var# is

a way of turning a statically known De Bruijn level and a usage proof into an application

of ‘var. In the type, ∞ is the “infinite” size, which all sizes are less than. Effectively,

writing ∞ allows us to ignore sizes when we are not doing recursion involving sizes.

cojoin-!ω : ∀ A → [λR , ∞] []c ⊢ (! ω# A⊸ ! ω# (! ω# A))

cojoin-!ω A =

⊸I (!E′ ([] ++ [1#]) ([] ++ [0#]) ([]n ++n [≤-refl]n)

(var# 0 (([]n ++n [≤-refl]n) ++n []n))

(!I′ (([] ++ [0#]) ++ [ω#])

(([]n ++n [≤-refl]n) ++n [≤-refl]n)

(!I′ ((([] ++ [0#]) ++ [ω#]) ++ [])

((([]n ++n [≤-refl]n) ++n [≤-refl]n) ++n []n)

(var# 1

(((([]n ++n [≤-refl]n) ++n [ω≤1]n) ++n []n) ++n []n)))))

Writing terms like this is clearly unsustainable. We will see a way of automating

the necessary proofs via a System-generic elaborator in section 8.1.

6.3 More example syntaxes

With the range of representable syntaxes now formalised, we can explore encoding tech-

niques for syntaxes more exotic than STλC and λR. As well as the variations presented

in section 4.4, we can represent a usage-annotated µµ̃-calculus and a Linear/non Linear

system.

136

Chapter 6. Generic usage-annotated syntax

6.3.1 An encoding of graphs

As a non-logical example of a syntax that can be encoded using linear syntax descrip-

tions, I consider a language of directed acyclic hypergraphs, which can be used as string

diagrams for symmetric monoidal categories. I want to represent hypergraphs like the

following, made up of operators { , , , } and wires between them with no fan-in

or fan-out. I have given the wires names (a, b, w, x, y, and z), which I use in a textual

representation of the graph on the right. The textual representation is in A-normal

form, where the two nullary operators have names beginning with eta, the two binary

operators have names beginning with mu, and names having the suffix white or black

based on the corresponding operator’s colour.

a

bx

y

z

w

a, b |-

let w, x := mu_black(a) in

let y := mu_white(x, b) in

let z := eta_white() in

let := eta_black(y) in

z, w

In the textual representation, I treat inputs a and b as free variables, while outputs z

and w are listed on the final line. The rest of the expression is a series of let-expressions

binding zero or more variables to the results of an operator applied to other variables.

All of the variables are used linearly, avoiding any fan-out.

To turn this representation into a type system, I do the following. First, I fix the

usage annotation semiring as the {0, 1, ω}-semiring to achieve linearity. Then, I set

Ty to be the following type. All of the variables get type wire, with a context full of

wire-type variables corresponding to the inputs of the graph. Meanwhile, the whole

expression has type bundle s, where s gives the shape of the outputs.

data Sort : Set where

wire : Sort

bundle : LTree → Sort

137

Chapter 6. Generic usage-annotated syntax

The type system itself is as follows. Each operator gets its own syntactic construct,

with essentially the same naming conventions as for the textual representation above.

Each of these constructs is an entire let-expression. There is also an ‘end construct,

allowing us to finish and list the outputs.

To see how the encodings of the operations work, let us look at the ‘µ•-construct

(). It has two premises conjoined by ∗ (in fact, all premises in this language are

separated, with no use of sharing conjunction). The first premise expects a simple

value, corresponding to the input of the operator. The second premise is more complex,

and represents the body/continuation of the let-expression. It binds two variables,

corresponding to the two outputs, which can then be used in later let-expressions or

the outputs. The bound variables all have type wire and usage annotation 1 (written

u1 in Agda) to make them behave linearly.

data ‘GraphL : Set where

‘η◦ ‘µ◦ ‘η• ‘µ• ‘end : LTree → ‘GraphL

GraphL : System

GraphL = ‘GraphL ▷ λ where

(‘η◦ s) → ⟨ [u1 • wire]c ‘⊢ bundle s ⟩ ‘_ bundle s

(‘µ◦ s) → ⟨ []c ‘⊢ wire ⟩ ‘∗ ⟨ []c ‘⊢ wire ⟩ ‘∗ ⟨ [u1 • wire]c ‘⊢ bundle s ⟩

‘_ bundle s

(‘η• s) → ⟨ []c ‘⊢ wire ⟩ ‘∗ ⟨ []c ‘⊢ bundle s ⟩ ‘_ bundle s

(‘µ• s) → ⟨ []c ‘⊢ wire ⟩ ‘∗ ⟨ [u1 • wire]c ++c [u1 • wire]c ‘⊢ bundle s ⟩

‘_ bundle s

(‘end s) → end-premises s ‘_ bundle s

The required premises of the ‘end-rule are calculated by end-premises. This follows

the tree structure of the shape, requiring a wire-term in an unextended context for each

leaf.

end-premises : LTree → Premises

end-premises [-] = ⟨ []c ‘⊢ wire ⟩

138

Chapter 6. Generic usage-annotated syntax

end-premises ε = ‘I∗

end-premises (s <+> t) = end-premises s ‘∗ end-premises t

A graph is a term of the graph language. Specifically, a graph with inputs of shape

s and outputs of shape t has the following type — a term in a context of shape s, all of

whose entries are wire variables with annotation 1, whose result type is bundle t.

Graph : LTree → LTree → Set

Graph s t = [GraphL , ∞] ctx {s} (λ _ → u1) (λ _ → wire) ⊢ bundle t

Finally, I give an example term myGraph. As I said at the end of section 6.2, writing

a term out in full is tedious, so I instead choose to use the machinery I discuss in detail

in section 8.1. The elab-unique tool elaborates a well typed term into a well typed

and usage-correct term as long as it can infer assignments of usage annotations that

satisfy the constraints. I add the prefix u to signify the unannotated (just well typed)

terms. All of the checks required by the elaboration procedure are done at Agda’s type

checking time, so we know that the program listed below can be elaborated by virtue

of the whole Agda definition being type-checked.

The uvar# tool is like the var# tool I used earlier — allowing us to refer to variables

by counting from the left-hand end of the context. I add these numbers to the picture

of the graph for convenience. Variables never go out of scope, despite being used, so

these numbers do not change with any bindings.

0

13

4

5

2

myGraph : Graph ([-] <+> [-]) ([-] <+> [-])

myGraph = elab-unique GraphL

(uµ• (uvar# 0)

(uµ◦ (uvar# 3) (uvar# 1)

(uη◦

(uη• (uvar# 4)

(uend (uvar# 5 ∗c⟨ _ ⟩ (uvar# 2)))))))

(λ _ → u1)

139

Chapter 6. Generic usage-annotated syntax

6.3.2 The system µµ̃

I encode a usage-annotated version of System L/the µµ̃-calculus [Curien and Herbe-

lin, 2000] — a syntax for classical logic — in such a way that contexts capture the

undistinguished parts of the sequent. As such, the generic substitution lemma we get

in section 7.6 is the form of substitution required in standard µµ̃-calculus metatheory.

Though the µµ̃-calculus is originally described as a sequent calculus [Curien and Herbe-

lin, 2000], I use the techniques of Herbelin [2005, p. 12] and Lovas and Crary [2006] to

present it using hypothetical judgements, thus giving a notion of variable to the system.

Unlike the single judgement form of λR and standard simply typed λ-calculi, the µµ̃-

calculus has three judgement forms: terms (traditional notation: Γ ⊢ A | ∆), coterms

(Γ | A ⊢ ∆), and commands (Γ ⊢ ∆). Read logically, terms and coterms are seen to,

respectively, prove and refute propositions (types), while commands exhibit contradic-

tions. This means that the abstract Ty in the generic framework is instantiated to Conc

(for conclusion) as below, with Ty not being exposed directly to the generic framework.

For now, I just consider multiplicative disjunction ` (par) and negation/duality, beside

an uninterpreted base type. These are enough to exhibit classical behaviour.

data Ty : Set where

base : Ty

` : (rA sB : Ann × Ty) → Ty

_^⊥ : (A : Ty) → Ty

data Conc : Set where

com : Conc

trm cot : (A : Ty) → Conc

With Ty instantiated as Conc, all terms are assigned Conc type, as are all the

variables. No variables are given com type, similar to how in the bidirectional typing

syntax of Allais et al. [2021, p. 25], no variables are given Check type. How to observe

this invariant is covered in the latter paper, so we will not repeat it here (having not

yet seen how to write traversals on terms).

The syntax comprises a cut between a term and a coterm of the same type, the

eponymous µ and µ̃ constructs for proof by contradiction, and then term and coterm

(introduction and elimination) forms for negation and par. I give a traditional presen-

140

Chapter 6. Generic usage-annotated syntax

P ≤ P l + Pr Q ≤ Ql +Qr P lγ ⊢ A | Qlδ Prγ | A ⊢ Qrδ
CutAPγ ⊢ Qδ

Γ ⊢ 1A,∆
µ

Γ ⊢ A | ∆
Γ, 1A ⊢ ∆

µ̃
Γ | A ⊢ ∆

Γ | A ⊢ ∆
λ

Γ ⊢ A⊥ | ∆

Γ ⊢ A | ∆
λ̃

Γ | A⊥ ⊢ ∆

P ≤ rP l + sPr Q ≤ rQl + sQr P lγ ⊢ A | Qlδ Prγ ⊢ B | Qrδ
⟨−,−⟩

Pγ ⊢ rA` sB | Qδ

Γ, rA, sB ⊢ ∆
µ⟨−,−⟩

Γ | rA` sB ⊢ ∆

Figure 6.1: A fragment of a usage-annotated µµ̃-calculus presented in traditional se-
quent notation

tation of this fragment of the µµ̃-calculus in figure 6.1, with my encoding of the rules

below.

data ‘MMT : Set where

‘cut ‘µ ‘µ∼ : (A : Ty) → ‘MMT

‘λ ‘λ∼ : (A : Ty) → ‘MMT

‘⟨-,-⟩ ‘µ⟨-,-⟩ : (rA sB : Ann × Ty) → ‘MMT

MMT : System

MMT = ‘MMT ▷ λ where

(‘cut A) → ⟨ []c ‘⊢ trm A ⟩ ‘∗ ⟨ []c ‘⊢ cot A ⟩ ‘_ com

(‘µ A) → ⟨ [1# , cot A]c ‘⊢ com ⟩ ‘_ trm A

(‘µ∼ A) → ⟨ [1# , trm A]c ‘⊢ com ⟩ ‘_ cot A

(‘λ A) → ⟨ []c ‘⊢ cot A ⟩ ‘_ trm (A ^⊥)

(‘λ∼ A) → ⟨ []c ‘⊢ trm A ⟩ ‘_ cot (A ^⊥)

(‘⟨-,-⟩ rA@(r , A) sB@(s , B)) →

r ‘· ⟨ []c ‘⊢ cot A ⟩ ‘∗ s ‘· ⟨ []c ‘⊢ cot B ⟩ ‘_ cot (rA ` sB)

(‘µ⟨-,-⟩ rA@(r , A) sB@(s , B)) →

⟨ [r , cot A]c ++c [s , cot B]c ‘⊢ com ⟩ ‘_ trm (rA ` sB)

141

Chapter 6. Generic usage-annotated syntax

6.3.3 Duplicability and L/nL

In section 4.4.2, I introduced a bunched connective □0+, used to ensure that such a

premise is derived in a context that allows it to be duplicated and discarded. Syntax

for this connective can be added to Premises and worked through the various parts of

the framework, though I do not show these parts in the text of this thesis for the sake

of simplicity and brevity. Additionally, variations such as □0 (requiring only that the

context is ≤ 0) and □0+∗ (requiring, in addition to □0+, closure under multiplication

by any scalar) can be added to the framework independently of each other and of □0+.

As well as the use case of inductive types, as shown in section 4.4.2, I use the

□0+∗-modality to encode the restriction to intuitionistic variables in the intuitionistic

judgement forms of the L/nL calculus [Benton, 1994]. I will explain this in detail in

due course.

Linear/non-Linear Logic has two sorts of types: linear types A,B,C and intuition-

istic types X,Y, Z. I encode these two sorts in the Agda types Ty lin and Ty int,

respectively. Using an indexed type lets me take the total space of Ty, named ΣTy, as

the evident dependent pair type. ΣTy becomes the type of types seen by the framework.

The types themselves are, on the linear side, a tensor unit tI, a tensor product _t⊗_,

and a linear function space _t⊸_; on the intuitionistic side, a unit t1, a product _t×_,

and an intuitionistic function space _t→_; and adjoint type formers tF and tG. I also

include a linear base type ι.

data Frag : Set where

lin int : Frag

data Ty : Frag → Set where

ι : Ty lin

tI : Ty lin

t⊗ : (A B : Ty lin) → Ty lin

t⊸ : (A B : Ty lin) → Ty lin

tF : Ty int → Ty lin

142

Chapter 6. Generic usage-annotated syntax

A,B,C ::= I | A⊗B | A⊸ B | FX

X,Y, Z ::= 1 | X × Y | X → Y | GA

J ::= Θ; Γ ⊢L A | Θ ⊢C X

L-var
Θ;A ⊢L A

C-var
Θ, X ⊢C X

Ii
Θ; · ⊢L I

Θ;Γ ⊢L I Θ;∆ ⊢L C
Ie

Θ;Γ,∆ ⊢L C

Θ;Γ ⊢L A Θ;∆ ⊢L B
⊗i

Θ;Γ,∆ ⊢L A⊗B

Θ;Γ ⊢L A⊗B Θ;∆, A,B ⊢L C
⊗e

Θ;Γ,∆ ⊢L C

Θ;Γ, A ⊢L B
⊸i

Θ;Γ ⊢L A⊸ B

Θ;Γ ⊢L A⊸ B Θ;∆ ⊢L A
⊸e

Θ;Γ,∆ ⊢L B

Θ ⊢C X
F i

Θ; · ⊢L FX

Θ;Γ ⊢L FX Θ, X; ∆ ⊢L C
Fe

Θ;Γ,∆ ⊢L C
1i

Θ ⊢C 1 (no 1e)
Θ ⊢C X Θ ⊢C Y

×i
Θ ⊢C X × Y

Θ ⊢C X0 ×X1 ×ei
Θ ⊢C Xi

Θ, X ⊢C Y
→i

Θ ⊢C X → Y

Θ ⊢C X → Y Θ ⊢C X
→e

Θ ⊢C Y

Θ; · ⊢L A
Gi

Θ ⊢C GA

Θ ⊢C GA
Ge

Θ; · ⊢L A

Figure 6.2: Linear/non-Linear Logic in traditional sequent notation

t1 : Ty int

t× : (X Y : Ty int) → Ty int

t→ : (X Y : Ty int) → Ty int

tG : Ty lin → Ty int

As in the other examples, I define a data type of rule labels ‘LnL before defining the

type system LnL. The system LnL has types ΣTy and usage annotations {0, 1, ω}, as I

have used before for linear systems. For reference, I give a standard presentation of the

rules of L/nL in figure 6.2.

We want to be able to embed the L/nL judgement forms Θ;Γ ⊢L A and Θ ⊢C X,

where Θ is made of intuitionistic variables and Γ is made of linear variables. I take the

subscript on ⊢L and ⊢C to be a redundant annotation of whether the conclusion type is

lin or int, so it does not appear in the Agda code, but I retain it in all non-mechanised

presentations.

143

Chapter 6. Generic usage-annotated syntax

I will generally ensure that all intuitionistic variables will all have usage annotation

ω, while linear variables will each be annotated either 1 or 0. These assignments of usage

annotations are enforced wherever the rules bind new variables. By usage subsumption,

intuitionistic variables may also end up with annotation 1 or 0, but we see this as a

(meaningless) refinement of the ω annotation, not causing a soundness problem. The

key invariant is that linear variables never get annotation ω.

The key difference in form between linear and intuitionistic sequents is that intu-

itionistic sequents cannot contain linear variables. However, syntax descriptions give

us no ability to directly state such a restriction on the kinds of variables. Therefore,

any encoded syntax will allow us to propose ill formed sequents like 1A ⊢C X, where

a linear variable is to be used for an intuitionistic conclusion. To make sure that this

is not a problem I use the □0+∗ bunched modality to guard many of the rules, mak-

ing sure that variables with usage annotation 1 cannot occur in provable intuitionistic

sequents. Specifically, every rule targeting an intuitionistic judgement has its premises

wrapped in a □0+∗. Additionally, rules F i and Ge, which target linear judgements but

have intuitionistic premises, similarly get a □0+∗. Note that having the annotation 0

means that well formed intuitionistic sequents can contain linear variables annotated 0,

but these variables are not usable.

For ease of producing terms, we may prefer a “garbage in; garbage out” style with a

minimal number of uses of □0+∗, which could be achieved in two different ways:

• Ensure that no sequent of the form Γ, 1A ⊢C X is derivable. This leaves boxes

only on rules 1-I and G-I — the two logical rules where an intuitionistic conclusion

is derived without any intuitionistic premises.

• Ensure that any rule targeting a well formed conclusion has only well formed

premises. This leaves boxes only on rules F -I and G-E — the two rules where a

linear conclusion is derived from intuitionistic premises.

It would be interesting to show the equivalence of these two approaches with the one I

have taken in this thesis, but that is left to future work.

The rules are presented in Agda code below, and also using bunched inference rule

144

Chapter 6. Generic usage-annotated syntax

I∗
Ii

⊢L I

⊢L I ∗ ⊢L C
Ie

⊢L C

⊢L A ∗ ⊢L B
⊗i

⊢L A⊗B

⊢L A⊗B ∗ 1A, 1B ⊢L C
⊗e

⊢L C

1A ⊢L B
⊸i

⊢L A⊸ B

⊢L A⊸ B ∗ ⊢L A
⊸e

⊢L B

□(⊢C X)
F i

⊢L FX

⊢L FX ∗ ωX ⊢L C
Fe

⊢L C

□1̇
1i

⊢C 1
(no 1e)

□(⊢C X ×̇ ⊢C Y)
×i

⊢C X × Y

□(⊢C X0 ×X1)
×ei⊢C Xi

□(ωX ⊢C Y)
→i

⊢C X → Y

□(⊢C X → Y ×̇ ⊢C X)
→e

⊢C Y

□(⊢L A)
Gi

⊢C GA

□(⊢C GA)
Ge

⊢L A

Figure 6.3: Linear/non-Linear Logic in bunched notation using {0, 1, ω} usage annota-
tions and with □0+∗ abbreviated to □

notation in figure 6.3.

data ‘LnL : Set where

‘Ii : ‘LnL

‘Ie : (C : Ty lin) → ‘LnL

‘⊗i : (A B : Ty lin) → ‘LnL

‘⊗e : (A B C : Ty lin) → ‘LnL

‘⊸i ‘⊸e : (A B : Ty lin) → ‘LnL

‘Fi : (X : Ty int) → ‘LnL

‘Fe : (X : Ty int) (C : Ty lin) → ‘LnL

‘1i : ‘LnL

‘×i : (X Y : Ty int) → ‘LnL

‘×e : (i : Hand) (X Y : Ty int) → ‘LnL

‘→i ‘→e : (X Y : Ty int) → ‘LnL

‘Gi ‘Ge : (A : Ty lin) → ‘LnL

LnL : System

LnL = ‘LnL ▷ λ where

145

Chapter 6. Generic usage-annotated syntax

‘Ii → ‘I∗ ‘_ lin , tI

(‘Ie C) → ⟨ []c ‘⊢ lin , tI ⟩ ‘∗ ⟨ []c ‘⊢ lin , C ⟩ ‘_ lin , C

(‘⊗i A B) → ⟨ []c ‘⊢ lin , A ⟩ ‘∗ ⟨ []c ‘⊢ lin , B ⟩ ‘_ lin , A t⊗ B

(‘⊗e A B C) →

⟨ []c ‘⊢ lin , A t⊗ B ⟩ ‘∗ ⟨ [u1 , lin , A]c ++c [u1 , lin , B]c ‘⊢ lin , C ⟩

‘_ lin , C

(‘⊸i A B) → ⟨ [u1 , lin , A]c ‘⊢ lin , B ⟩ ‘_ lin , A t⊸ B

(‘⊸e A B) →

⟨ []c ‘⊢ lin , A t⊸ B ⟩ ‘∗ ⟨ []c ‘⊢ lin , A ⟩ ‘_ lin , B

(‘Fi X) → ‘□0+∗ ⟨ []c ‘⊢ int , X ⟩ ‘_ lin , tF X

(‘Fe X C) →

⟨ []c ‘⊢ lin , tF X ⟩ ‘∗ ⟨ [uω , int , X]c ‘⊢ lin , C ⟩ ‘_ lin , C

‘1i → ‘□0+∗ ‘1̇ ‘_ int , t1

(‘×i X Y) →

‘□0+∗ (⟨ []c ‘⊢ int , X ⟩ ‘×̇ ⟨ []c ‘⊢ int , Y ⟩) ‘_ int , X t× Y

(‘×e i X Y) → ‘□0+∗ ⟨ []c ‘⊢ int , X t× Y ⟩ ‘_ int , [X > i < Y]

(‘→i X Y) → ‘□0+∗ ⟨ [uω , int , X]c ‘⊢ int , Y ⟩ ‘_ int , X t→ Y

(‘→e X Y) →

‘□0+∗ (⟨ []c ‘⊢ int , X t→ Y ⟩ ‘×̇ ⟨ []c ‘⊢ int , X ⟩) ‘_ int , Y

(‘Gi A) → ‘□0+∗ ⟨ []c ‘⊢ lin , A ⟩ ‘_ int , tG A

(‘Ge A) → ‘□0+∗ ⟨ []c ‘⊢ int , tG A ⟩ ‘_ lin , A

In section 8.4, I will give translations between the original L/nL system, this en-

coding of L/nL, and λR, providing some assurance that the correct logic has been

encoded.

6.4 Conclusion

I have shown via examples that the syntax descriptions defined in this chapter can

capture a significant range of simply typed usage-aware calculi. Together with the

examples of posemirings given in chapter 4, the whole framework is capable of encoding

146

Chapter 6. Generic usage-annotated syntax

many specific substructural calculi. However, the language of descriptions has several

restrictions, with more and less clear practical consequences. Many of these restrictions

are shared with the syntax descriptions of Allais et al. [2021], but some pertain to usage

annotations.

One clear limitation is that the forms of judgements do not allow enough interde-

pendency to capture dependently typed calculi. In particular, for any given calculus,

there is one fixed set of types, with no indexing over contexts. This allows contexts

to have a flat list-like structure rather than a telescope, and means that the type of a

term does not depend on that context, but clearly restricts the expressiveness of the

calculi which can be encoded. As well as dependently typed calculi, this also prevents

the encoding of the well formed types of System Fω.

Less clear than describability of System Fω is describability of System F . Though

I have not presented the details, I believe it should be possible to encode calculi with

polymorphism, such as System F and the usage-annotated system found in Abel and

Bernardy [2020], via a two-stage process. First, we make a syntax description for the

language of types, and then use the well typed terms arising from that description as

the set of types when making the description for the System F terms. Such an encoding

would yield all of the benefits of the framework presented in this thesis separately to

the language of types and the language of terms, but how these two languages interact

is unclear. For example, in chapter 7, I provide a syntax-generic substitution operation.

This operation would yield substitution for type variables in types and substitution for

term variables in terms, but substitution for type variables in terms would have to be

provided separately, and would likely be more complicated. It would be interesting to

see future work in this direction, possibly inspired by how Autosubst [Schäfer et al.,

2015] handles the same issue.

As for restrictions peculiar to the usage-aware setting, we of course have the gen-

eral limitations of posemiring annotations listed in section 4.6, which I will not repeat

here. Additionally, there are things we could wish to do with posemiring-based us-

age annotations which we do not have access to with the descriptions given in this

chapter. For example, an issue one may have with the encoding of Linear/non-Linear

147

Chapter 6. Generic usage-annotated syntax

Logic given in section 6.3.3 is that linear variables and intuitionistic variables, despite

having morally distinct usage disciplines, necessarily share the {0, 1, ω} posemiring of

usage annotations. If one wanted to generalise this construction to different pairs of

usage disciplines, one may well find that they do not combine adequately into a single

posemiring. A possible solution would be to have a range of kinds, and for each kind to

have its own set of types and its own posemiring — for example, a linear kind and an

intuitionistic kind, using {0, 1, ω} and the 1-element posemiring, respectively. However,

the descriptions given in this thesis only allow for one posemiring.

Finally, while there is a simple and well motivated core of premise connectives —

1̇, ×̇, I∗, ∗, and r · (−) — the various □-modalities feel like ad hoc additions. While

I have shown that □0+ and □0+∗ have several practical uses, it is unclear whether

there should be more modalities. Furthermore, I have not made an effort to isolate the

properties that make these modalities well behaved. We will see in section 7.2 that any

such modality will need to be functorial in the appropriate sense, but other examples of

generic programming, such as the usage elaborator which will be detailed in section 8.1,

may need further properties.

148

Chapter 7

Generic usage-aware semantics

Having fixed a universe of syntaxes, in which we can build terms, the next thing to

do is to write recursive functions on terms. With terms being given by an inductive

data type definition, they already come with a recursion and an induction principle.

However, these principles do not handle variable-binding, which we have seen with the

fact that we had to write the bind helper function for renaming and substitution in

section 5.3.

In this chapter, the central construct is a function semantics which, for a V-

environment ρ : Γ
V

=⇒ ∆, maps a term M : ∆ ⊢ A to some semantic value in the

type C ΓA. This is a direct adaptation of the semantics function of section 2.4, which

has the same kind of action on intuitionistic terms, given similar operations on V and

C as what we had earlier. The semantics function recurses on the term M , updating ρ

whenever new variables are bound. In our usage-aware case, ρ is also updated whenever

we come across linear combinations induced by premise connectives I∗, ∗, and r · .

This chapter is structured as follows. I start by giving a quick introduction to linear

relations — a generalisation of linear maps — with reference to their use in mechanised

algebraic reasoning, in section 7.1. Using linear relations, I give a functorial map oper-

ation to a single layer of syntax in section 7.2. I then adapt the Kripke function space

to the usage-aware setting in section 7.3. Then I apply the Kripke function space, along

with much of the machinery I have introduced in previous chapters, to give the seman-

tics function in section 7.4. Finally, I show that the Kripke function space simplifies

149

Chapter 7. Generic usage-aware semantics

under certain conditions in section 7.5, and I use that case to give the syntax-generic

simultaneous renaming and substitution operations in section 7.6.

7.1 Linear relations in Agda

In section 5.1, I defined usage-annotated environments (definition 5.1.7). One compo-

nent of a usage-annotated environment is a linear map Ψ which, when applied to the

target usage vector, gives a vector compatible with the source usage vector.

When it comes to mechanisation, I prefer to replace an assertion “P ≤ QΨ”, involv-

ing a linear map Ψ, by an assertion “PΨQ”, where Ψ is now a linear relation said to

relate P and Q. I define linear relations as follows, where the reader may wish to check

that a linear map gives rise to a linear relation via the expression P ≤ QΨ.

Definition 7.1.1. Given a posemiring R and modules M and N over R, a linear

relation between M and N is a relation Ψ between the underlying sets of M and N

such that the following properties hold of all P,P ′,P l,Pr ∈ M and all Q,Q′,Ql,Qr ∈

N .

P ′ ≤ P ∧ PΨQ ∧ Q ≤ Q′ =⇒ P ′ΨQ′

(∃Q. PΨQ ∧ Q ≤ 0) =⇒ P ≤ 0

(∃Q. PΨQ ∧ Q ≤ Ql +Qr) =⇒ (∃P l,Pr. P ≤ P l + Pr ∧ P lΨQl ∧ PrΨQr)(
∃Q. PΨQ ∧ Q ≤ rQ′) =⇒

(
∃P ′. P ≤ rP ′ ∧ P ′ΨQ′)

I write M →+ N as the type of linear relations between M and N .

Relations have several advantages over functions when doing mechanised algebra

in type theory. For one, what are compound expressions in functional style — for

example x ≤ f(y)+g(z) — become collections of simple relationships in relational style

— for example ∃v, w. vfy ∧ wgz ∧ Addx v w. The advantage of this is that we

have immediate access to all of the expressions and subexpressions, and the proofs of

the relationships between them. This means that there is no need for congruence or

monotonicity lemmas, and correspondingly no need to explicitly describe the syntactic

150

Chapter 7. Generic usage-aware semantics

context in which some algebraic manipulation is being applied and we rely less on the

unifier. Another advantage is that one can design relations so that pattern-matching

suggestively decomposes complex relationships. For example, given F : M →+ M ′ and

G : N →+ N ′, we can define a relation F ⊕G : M ⊕N →+ M ′⊕N ′ pointwise, so that a

proof of (x, x′)(F ⊕G)(y, y′) is a proof of xFy together with a proof of x′Gy′. Pattern-

matching on such a proof immediately gives us these constituent parts, whereas proofs

of the corresponding statement involving functions would require using a lemma to get

the parts. There is a dual advantage when producing one of these proofs, where we can

introduce the canonical constructor (for pairs, in this example) rather than having to

find the appropriate lemma.

Relations also have several disadvantages, though I have found that for my use case,

these are outweighed by the advantages. For example, automated algebraic solvers are

better developed for function-based algebraic expressions, and sometimes the fact that

functions satisfy unitality and associativity up to decidable judgemental equality means

that some proofs can be avoided. The handling of compound expressions can also be a

disadvantage in that it necessitates lots of new variable names and obscures goal and

context displays. Finally, in predicative systems such as Agda, relations typically live in

a larger universe than the corresponding functions. In practice, this means quantifying

over an extra level variable for each relation involved in general lemmas.

There are more relations than there are functions, so statements involving relations

are more general than the corresponding statements involving functions. However, one

part of the development requires functions rather than relations, so I impose function-

ality on relations after the fact. The appropriate notion of functional relation I use

is slightly different to the standard one, in that I take account of the order on the

codomain, and thus ask for the largest solution rather than the unique solution.

Definition 7.1.2. A linear relation Ψ between M and N is (right-to-left) functional

if, for every Q ∈ N , there exists universally a P ∈ M such that PΨQ. Universality

means that, for all P ′ such that P ′ΨQ, we have P ′ ≤ P (i.e. P is the largest solution).

In Agda code, Ψ becomes Ψ and the fact that Ψ relates P and Q (in this section

written PΨQ) is rendered as Ψ .rel P Q. That Ψ respects the orders on its arguments

151

Chapter 7. Generic usage-aware semantics

is given by Ψ .rel-≤m, and the various linearity properties are given by Ψ .rel-0m, Ψ

.rel-+m, and Ψ .rel-*m.

7.2 A layer of syntax is functorial

A basic property of the universe of syntaxes is that every syntax supports a functorial

action on subterms, realised by a function map-s. Its type says that to map a func-

tion f over a layer of syntax, there must be a linear map Ψ relating the domain and

codomain usage contexts, and f should be usable wherever the domain and codomain

usage contexts are similarly related by Ψ.

map-s : (s : System) →

(∀ {Θ P′ Q′} → Ψ .rel P′ Q′ → X Θ (ctx Q′ δ) _ Y Θ (ctx P′ γ)) →

(∀ {P Q} → Ψ .rel P Q → J s Ks X (ctx Q δ) _ J s Ks Y (ctx P γ))

This generality is needed because usage contexts change between a term and its im-

mediate subterms—they are decomposed according to the bunched connectives used in

the rules. X and Y are ExtOpenFams, with Θ being the context extension for a subterm

(i.e., the variables newly bound in that subterm). Unlike usage annotations, types in

the contexts γ and δ, and the conclusion types implicit here, are preserved through-

out. This is the essence of the usage annotation based approach—we use traditional

techniques for variable binding, with the usage annotations layered on top.

The heart of map-s is map-p, which recursively works through the structure ps of

premises of the rule applied, acting on each subterm it finds. Here, particularly in the

clauses for ‘∗ and ‘·, we see why it is not enough for the function on subterms to apply

at usage contexts P and Q — rather, it also needs to apply at any similarly related P′

and Q′. In the case of ‘∗, we have that P ≤ PM +PN , with M and N being collections

of subterms in usage contexts PM and PN , respectively. Linearity of Ψ yields QM

and QN such that Q ≤ QM + QN and we use map-p recursively at (PM ,QM) and

(PN ,QN) on M and N. The cases for ‘· and ‘I∗ are similar, each using a different aspect

of linearity. In contrast, the cases for ‘1̇ and ‘×̇, which are the only constructors used

in fully structural systems, do not involve any changes in the usage contexts.

152

Chapter 7. Generic usage-aware semantics

The linearity of relation Ψ is given by fields rel-0m, rel-+m, and rel-*m (with the

subscript-m being a mnemonic for module, as opposed to scalar).

map-p : (ps : Premises) →

(∀ {Θ P′ Q′} → Ψ .rel P′ Q′ → X Θ (ctx Q′ δ) _ Y Θ (ctx P′ γ)) →

(∀ {P Q} → Ψ .rel P Q → J ps Kp X (ctx Q δ) → J ps Kp Y (ctx P γ))

map-p ⟨ Γ ‘⊢ A ⟩ f r M = f r M

map-p ‘1̇ f r _ = _

map-p (ps ‘×̇ qs) f r (M , N) = map-p ps f r M , map-p qs f r N

map-p ‘I∗ f r I∗c⟨ sp0 ⟩ = I∗c⟨ Ψ .rel-0m (r , sp0) ⟩

map-p (ps ‘∗ qs) f r (M ∗c⟨ sp+ ⟩ N) =

let rM ↘, sp+′ ,↙ rN = Ψ .rel-+m (r , sp+) in

map-p ps f rM M ∗c⟨ sp+′ ⟩ map-p qs f rN N

map-p (p ‘· ps) f r (⟨ sp* ⟩·c M) =

let r′ , sp*′ = Ψ .rel-*m (r , sp*) in

⟨ sp*′ ⟩·c map-p ps f r′ M

I have also extended map-p to handle the various □-modalities described in sec-

tion 6.3.3. The Agda code for this extension is not particularly readable, so I do not

include it in this document. However, this extension is notable as the only part of the

framework requiring that the linear relation Ψ be functional (i.e., total and determinis-

tic).

7.3 The Kripke function space

At this point I introduce a minor generalisation to OpenFam and ExtOpenFam (as defined

in section 6.2): I —OpenFam and I —ExtOpenFam. We obtain the definition of I —

OpenFam by replacing the textual occurrence of Ty by the parameter I, though there is

still reference to the ambient Ty via Ctx. The main value I am interested in I taking,

other than Ty, is Ctx — for example, the type family of V-environments, for a given V,

is a Ctx —OpenFam _. I use this generality in the type of extend in the next section.

153

Chapter 7. Generic usage-aware semantics

—OpenFam : ∀ {i} → Set i → ∀ ℓ → Set (i ⊔ suc ℓ)

I —OpenFam ℓ = Ctx → I → Set ℓ

—ExtOpenFam : ∀ {i} → Set i → ∀ ℓ → Set (i ⊔ suc ℓ)

I —ExtOpenFam ℓ = Ctx → I —OpenFam ℓ

The definition Kripke V C ∆ is a kind of function space that describes a C-value

parametrised by ∆-many additional V-values (all correctly typed and usage-annotated).

It is used to describe how to go under binders in a Higher-Order Abstract Syntax style:

To go under a binder we must provide semantic interpretations for all the additional

variables.

Kripke : (V : OpenFam v) (C : I —OpenFam c) → I —ExtOpenFam _

Kripke = Wrap λ V C ∆ Γ A → □r ([V]_⇒e ∆ −∗ [C]_⊨ A) Γ

Wrap is a device that turns any type family into an equivalent type family that is

definitionally injective in its indices, which helps with Agda’s type inference. It turns

the type family into a parametrised record with a single field get whose type is the type

in the body of the λ-abstraction. For understanding the meaning of Kripke, Wrap can

be ignored.

If ∆ is of the form s1B1, . . . , snBn, then Kripke V C ∆ Γ A is equivalent to □r (s1 ·

[V]_⊨ B1 −∗ · · · −∗ sn · [V]_⊨ Bn −∗ [C]_⊨ A) Γ by Currying. That is to say, the

Kripke function is expecting a value for each newly bound variable, at the multiplicity

of its annotation, together with the resources supporting each of those values. We use

the “magic wand” function space here to enforce the invariant that the freshly bound

variables have usage annotations that are added to the existing variables, not shared

with them. The use of the □r modality ensures that we can still use it in the presence

of additional variables introduced by weakening.

Kripke is functorial in the C argument, as witnessed by the mapKC function, which

is essentially post-composition:

mapKC : ∀ {A B} → [C]_⊨ A _ [C′]_⊨ B →

∀ {∆ Γ} → Kripke V C ∆ Γ A → Kripke V C′ ∆ Γ B

mapKC f b .get ren .app∗ sp ρ = f (b .get ren .app∗ sp ρ)

154

Chapter 7. Generic usage-aware semantics

7.4 Semantic traversal

We can now state the data required to implement a traversal assigning semantics to

terms. For open families V and C, interpreting variables and terms respectively, we

assume that V is renameable (i.e., that
V

A _ □
(V

A
)

for all A), that V is embeddable

in C, and that we have an algebra for a layer of syntax, where bound variables are

handled using the Kripke function space:

record Semantics (d : System) (V : OpenFam v) (C : OpenFam c)

: Set (suc 0ℓ ⊔ v ⊔ c) where

field

ren^V : ∀ {A} → Renameable ([V]_⊨ A)

JvarK : V _ C

JconK : J d Ks (Kripke V C) _ C

We mutually define the action semantics and its lemma body. The purpose of seman-

tics is to turn a term into a C-value using a V-environment and the fields of Semantics.

Meanwhile, body does a similar job, but also deals with newly bound variables. In par-

ticular, body takes a term in a context extended by Θ, and produces a Kripke function

from V-values for Θ to C-values.

semantics : ∀ {Γ ∆} → [V] Γ ⇒e ∆ → ∀ {sz} →

[d , sz] ∆ ⊢_ _ [C] Γ ⊨_

body : ∀ {Γ ∆} → [V] Γ ⇒e ∆ → ∀ {sz Θ} →

Scope [d , sz]_⊢_ Θ ∆ _ Kripke V C Θ Γ

To implement the new recursor semantics, we use the standard recursor, which in

one case gives us a variable v, and in the other gives us a structure of subterms M,

each of which is in an extended context. To deal with a variable v, we look it up in the

environment ρ, then use the JvarK field to map the resulting V-value to a C-value. To

deal with a structure of subterms M, we use the functoriality of the syntactic structure

to consider each subterm separately. On a subterm, we apply body, which amounts

to a recursive call to semantics with an extended environment. Recall that relocate

(lemma 5.2.1) adjusts the environment ρ to work in the usage contexts of the subterms.

155

Chapter 7. Generic usage-aware semantics

semantics ρ (‘var v) = JvarK $ ρ .lookup (ρ .fit-here) v

semantics ρ (‘con M) = JconK $

map-s (ρ .Ψ) d (λ r → body (relocate ρ r)) (ρ .fit-here) M

For body, we are given a subterm M, to which we want to apply semantics. To

do so, we need an extended version of the initial environment ρ. We express this

as the generation of a Kripke function that produces the extended environment given

interpretations of the fresh variables. We take ρ, which is an environment covering ∆,

and σ, which is an environment covering Θ, and glue them together using the inductive

rules for generating environments, after having renamed ρ via corollary 5.2.11 to make

it fit the new context Γ+ (intended to be Γ ++c Θ):

extend : ∀ {Γ ∆ Θ} →

[V] Γ ⇒e ∆ → Kripke V ([V]_⇒e_) Θ Γ (∆ ++c Θ)

extend ρ .get ren .app∗ sp σ = ++e (ren^Env ren^V ρ ren ∗⟨ sp ⟩ σ)

To define body, we use mapKC to post-compose the environment extension by the

λ-function taking an extended environment and acting with it on M.

body ρ M = mapKC (λ σ → semantics σ M) (extend ρ)

semantics is the fundamental lemma of the framework. With it proven, I move onto

corollaries and specific applications.

7.5 Reifying the Kripke function space

A result I will use throughout the rest of this thesis is reification. When we have

an index-preserving mapping from usage-checked variables to V-environments, we can

construct environments of the form Γ
V

=⇒ Γ (identity environments) for all Γ. This

lets us write the reify function, which simplifies our obligations in giving a Semantics by

coercing Kripke functions into just C-values in an extended context.

Lemma 7.5.1 (reify). If V is an open family such that there is a function v : ⊐− _ V,

we get a function of type KripkeV C _ Scope C for any C.

156

Chapter 7. Generic usage-aware semantics

Proof. Let b : KripkeV C∆ΓA. That is, b is a Kripke function yielding C-computations

We want to apply b so as to get a C (Γ,∆)A. Let Pγ = Γ and Qδ = ∆. The □r in

the type of b allows us to reverse-rename Γ to Γ, 0δ. Then we give the −∗-function an

argument in context 0γ,∆, noting that (Γ, 0δ) + (0γ,∆) = (Γ,∆), as we wanted from

the result. The argument needs type 0γ,∆
V

=⇒ ∆. We produce this via corollary 5.2.10

from an environment ρ : 0γ,∆
V

=⇒ 0γ,∆ created using v and a renaming which is the

complement to that used on □r.

All of the Vs used in examples in this paper support identity environments. However,

Allais et al. [2021, p. 27] give some important examples that do not support identity

environments, and thus cannot use reify (lemma 7.5.1). The feature that causes the

lack of support for identity environments is that a semantics can make use of the fact

that only variables of particular kinds are bound by the syntax. In the examples of

Allais et al., a bidirectionally typed language only binds variables that synthesise their

type, as opposed to those whose type is checked. The semantics of type-checking and

elaboration rely on variables synthesising their type, so V is chosen to cover only those

variables. Instead of using reify, we must observe that each syntactic form only binds

such synthesising variables. Similar phenomena would appear in, say, a call-by-value

language where variables are values (not computations), or a polarised language where

variables always have a polarity matching their type.

7.6 Renaming and substitution

The final completely syntax-generic result I present is simultaneous substitution. I

derive this as I did in the simply typed case in section 2.4: I first show that a syntactic

kit can be turned into a semantics, and then by instantiating the notion of kit for,

in turn, renaming and substitution, the general semantic traversal gives the result we

want.

The notion of Kit is essentially the same as in the simply typed case, once we allow

for changes to the basic definitions of variables, terms, and environments (in particular,

renamings).

157

Chapter 7. Generic usage-aware semantics

record Kit (d : System) (V : OpenFam v) : Set (suc 0ℓ ⊔ v) where

field

ren^V : ∀ {A} → Renameable ([V]_⊨ A)

vr : _⊐−_ _ V

tm : V _ [d , ∞]_⊢_

The first two fields of Semantics derive directly from fields of Kit. Meanwhile, to

handle term constructors, we first reify to get a collection of traversed subterms, and

then use ‘con to assemble these subterms into a similarly shaped syntactic form as we

started with. The vr field is used implicitly in reify, as it is used to show that V-identity

environments exist.

kit→sem : Kit d V → Semantics d V [d , ∞]_⊢_

kit→sem K .ren^V = K .ren^V

kit→sem K .JvarK = K .tm

kit→sem {d = d} K .JconK = ‘con ◦ map-s′ d reify

where open Kit K using (identityEnv)

The action of a syntactic traversal on logical rules is basically fixed: we preserve

the logical rule and extend the environment with any newly bound variables according

to vr. Meanwhile, the action on variables is relatively unconstrained: we look up the

variable in the environment to get a V-value, then transform that V-value into a term

using tm.

The idea of simultaneous renaming is that variables replace variables, whereas with

simultaneous substitution, terms replace variables. This translates to environments for

renaming containing ⊐−-values (variables), and environments for substitution containing

⊢-values (terms).

Ren-Kit : Kit d _⊐−_

Ren-Kit = record { ren^V = ren^⊐− ; vr = id ; tm = ‘var }

Notice that ren^⊢, witnessing the fact that terms are renameable, is a corollary of

Ren-Kit.

158

Chapter 7. Generic usage-aware semantics

Sub-Kit : Kit d [d , ∞]_⊢_

Sub-Kit = record { ren^V = ren^⊢ ; vr = ‘var ; tm = id }

7.7 Conclusion

In this chapter, I have completed my generalisation of the core of the work of Allais et al.

[2021]. The key decision to be made in this generalisation process was that the Kripke

function spaces would be based on the −∗ bunched connective. That this change works

justifies the idea of a deep connection between linear syntaxes and bunched-logic-style

handling of contexts.

The main pay-off we have seen so far from this and the previous chapter is that

all syntaxes we can describe respect substitution. However, in the following chapter, I

give more specific worked examples using the generic semantic traversal and operations

derived from it.

159

Chapter 8

Applications

In this chapter, I provide four example uses of semantic traversals: a usage elaborator,

a normalisation by evaluation algorithm, a denotational semantics, and translations

between calculi. The reader is also encouraged to see the far greater range of examples

in the work of Allais et al. [2021], which should adapt to our usage-annotated setting.

The usage elaborator (section 8.1) gives an example of a program that is generic in

both syntax and usage annotations, as well as being an essential tool for practical use

of the framework. The normalisation by evaluation algorithm (section 8.2) is for a

specific syntax, but exercises parts of the generic semantic traversal — particularly,

its handling of environments — to good effect. The denotational semantics in terms

of world-indexed relations (section 8.3) presents an interesting semantics for semiring-

annotated type systems, but with minimal use of operations provided by the framework.

Finally, the translations between λR and L/nL (section 8.4) both justify the encoding

of L/nL given in section 6.3.3 and give examples of syntactic work benefiting from the

generic renaming and substitution operations.

8.1 A usage elaborator

Using the constructs we have seen so far, producing example terms soon becomes ex-

tremely tedious. We can achieve some abbreviation by using pattern synonyms to wrap

around ‘con expressions, but we still have to produce essentially bespoke proofs when-

160

Chapter 8. Applications

ever we use a usage-sensitive part of the syntax. The size of each of these proofs is

roughly proportional to the number of free variables, so the amount of proof we have to

write grows roughly quadratically with the size of terms. An additional factor, which

we can’t see on paper but is nonetheless significant, is that type checking time for these

proofs soon becomes prohibitive to interactive development.

Our aim in this section is to automate usage constraint proofs, making terms both

easier to write and more performant to check. We invoke the automation by writing

terms in a syntax where usage constraints have been trivialised, and then use a semantic

traversal over the simplified syntax to try to produce a fully elaborated term in the orig-

inal syntax. We write the automation in a way that is generic in the syntax description,

thus avoiding repetition and facilitating the prototyping of new type systems.

The type of syntax descriptions depends on the type of usage annotations because

of variable binding. For example, in the !r-E rule of figure 4.4, the right premise binds

a new variable with annotation r, where r is drawn from the ambient posemiring.

The scaling connective also makes direct reference to the posemiring. To produce a

simplified syntax description, where usage constraints are trivialised, we set the ambient

posemiring to the 1-element 0 posemiring. In contrast to syntax descriptions, even

though types can contain usage annotations, the type of types does not depend on

the type of usage annotations. This means that, in our simplified syntax, terms have

types from the original system even though variables have trivial usage annotations.

We define the 0 posemiring as follows, being careful to use the 0-field record type ⊤ so

that everything algebraic gets solved by Agda’s η-laws. Indeed, in this very definition,

all of the semiring operations and laws are canonically inferred.

0-poSemiring : PoSemiring 0ℓ 0ℓ 0ℓ

0-poSemiring = record

{ Carrier = ⊤; _≈_ = λ _ _ → ⊤; _≤_ = λ _ _ → ⊤ }

The elaboration process is monadic. In particular, we use the List/non-determinism

monad to give all of the possible annotation choices on the free variables of a term.

We believe the commitment to multiple solutions is inherent when the syntax contains

‘1̇. For example, in the intermediate stages of elaborating (⊢ λx. (∗, ∗)) : A⊸ ⊤ ⊗ ⊤

161

Chapter 8. Applications

with a usage counting posemiring (assuming reasonable rules for ⊤ and ⊗), it is unclear

whether to use the variable x in the left ∗ or the right ∗. This uncertainty should be

reflected in the final result.

The non-deterministic choices we make during elaboration are enumerated by the

fields of NonDetInverses. These choices are driven by the typing rules and a candidate

usage vector for the conclusion. For example, +−1 r is needed when we encounter a ‘∗

in the syntax and the candidate usage annotation we are considering is r. Then, +−1 r

is a list of pairs of annotations p and q that r can split into, together with a proof of the

splitting. For 0#−1 and 1#−1, inverses to constants, we are given the candidate r and

typically return an empty list if the constraint cannot be satisfied, or a singleton list

containing a proof. *−1 is used when we encounter scaling, in which case we know both

the scaling factor r (from the syntax description) and the candidate q. These inverse

operations combine monadically (in fact, applicatively) to give inverses to the vector

operations of zero, addition, scaling, and basis.

record NonDetInverses : Set where

field

0#−¹ : (r : Ann) → List (r ≤ 0#)

+−¹ : (r : Ann) → List (∃ \ ((p , q) : _ × _) → r ≤ p + q)

1#−¹ : (r : Ann) → List (r ≤ 1#)

*−¹ : (r q : Ann) → List (∃ \ p → q ≤ r * p)

We choose the V of our semantics to be (unannotated) variables. For the C, we

consider functions from candidate usage vectors R to the list of elaborated derivations

with usage annotations given by R. The protocol this encodes is that the user will

provide an unannotated term together with a candidate usage context R, and usage

elaboration returns a list of possible ways the term could be annotated such that the

conclusion has usage context R. The module name U refers to the fact that we are

taking the ambient posemiring to be 0 in OpenFam. The effect on OpenFam is that the

usage annotations of any contexts we consider are uninformative (hence the _ on the

left).

162

Chapter 8. Applications

C : System → U.OpenFam _

C sys (U.ctx _ γ) A = ∀ R → List ([sys , ∞] ctx R γ ⊢ A)

To traverse the unannotated terms, we produce a Semantics over the unannotated

system uSystem sys. To write it, we make use of idiom brackets L . . . M, which have

the effect of replacing top-level spines of applications by (List-)applicative applications.

Field by field, we already know that variables are renameable. To interpret a variable,

we consider all the possible proofs that such a variable could be well annotated, and

package them up as a variable term via the applicative machinery. Finally, for compound

terms, we first reify the unannotated subterms, and then combine the subterms via a

lemma.

elab-sem : ∀ sys → U.Semantics (uSystem sys) U._⊐−_ (C sys)

elab-sem sys .ren^V = U.ren^⊐−

elab-sem sys .JvarK (U.lvar i q _) R =

L ‘var L (lvar i q) (⟨ i |−¹ R) M M

elab-sem sys .JconK b R =

let rb = U.map-s′ (uSystem sys) U.reify b in

L ‘con (lemma sys rb) M

The lemma essentially goes through the shape of the premises, combining the collec-

tions of subterms in the natural way. For example, at each _×̇_, we take the Cartesian

product of the possibilities of each half, and at each _∗_, we non-deterministically split

the usage annotations coming in, and then take the Cartesian product. When it comes

to newly bound variables, the syntax description tells us their annotations, so there is

no further non-determinism introduced here.

lemma : ∀ (sys : System) {A Γ} →

U.J uSystem sys Ks (U.Scope (C sys)) (uCtx Γ) A →

List (J sys Ks (Scope [sys , ∞]_⊢_) Γ A)

To actually use elab-sem on terms, we take the associated semantics and pass it the

identity environment (an identity renaming in this case, because V is a family of vari-

ables). We use elab-unique, which further checks statically that exactly one derivation

163

Chapter 8. Applications

is returned. The candidate usage vector R will be [] for closed terms, and otherwise we

have to supply the intended usage annotations.

We can now use the elaborator to automatically infer the usage annotations for the

example at the end of section 6.2. This allows us to write:

cojoin-!ω : ∀ {A} → [λR , ∞] []c ⊢ (! ω# A⊸ ! ω# (! ω# A))

cojoin-!ω = elab-unique _ (⊸I (!E (var# 0) (!I (!I (var# 1))))) []

We have instantiated the usage elaborator so that: 0#−1 is a singleton on 0 and ω, and

empty on 1; 1#−1 is a singleton on 1 and ω, and empty on 0; +−1 gives 0 7→ [(0, 0)], 1 7→

[(0, 1), (1, 0)], and ω 7→ [(ω, ω)]; and *−1 gives (ω, 0) 7→ [0], (ω, 1) 7→ [], and (ω, ω) 7→ [ω]

(omitting (0,_) and (1,_) cases for brevity). Note that we do not consider splitting

ω up as, say, 1 + ω, because this splitting would introduce more non-determinism but

not allow any more terms to be typed. As such, the only non-determinism comes when

we have variables annotated 1 and need to do an additive split, like when we apply

the !E rule below. At this point, the variable can become either 0-annotated in the left

subterm and 1-annotated on the right, or vice-versa. We will find that, because the left

subterm wants to use that variable, the former choice will be rejected. The function

var# is a convenience for converting statically known natural numbers, representing De

Bruijn levels, into variable terms.

8.2 Normalisation by evaluation

To give an example of a common operation on programming languages, I present a

normalisation by evaluation (NbE) algorithm [Berger and Schwichtenberg, 1991] for a

fragment of λR. The algorithm contains not only a structural induction on a term using

an environment, but also functions which create terms. It therefore gives an example

of various parts of the framework.

Given the linear theme of λR, one may consider using the size-based normalisation

proof given by Girard [1987, p. 71] and Krishnaswami [2013]. However, this fails for

two reasons for λR, both of which also apply to the fragment I consider here defined by

A,B ::= ι | !rA⊸ B. Firstly, we can use the ! connective in the linear instantiation of

164

Chapter 8. Applications

λR to introduce contractable variables. The size maintenance/reduction principles do

not hold in the presence of contraction, because substitution for a contracted variable

can make the term grow arbitrarily larger. Secondly, there are instantiations other than

the linear {0, 1, ω} semiring, many of which allow for non-linear behaviour even without

the !-connective. For example, with the trivial semiring, we recover an intuitionistic

calculus with no usage restrictions. We therefore have to use a normalisation proof

which also works for standard Simply Typed λ-Calculus.

Though it is easy to define a syntax of normal and neutral forms, I do not do so here.

Converting between terms and normal/neutral forms introduces significant overheads,

and the syntax of normal/neutral forms is somewhat complicated by the invariant that

all variables are of neutral type. It would be worthwhile future work to work out this

refinement, thereby showing that the normaliser presented in this section actually puts

terms into normal form. Another limitation is that I do no reasoning about equivalence

of terms, so there is no proof that the resultant term is equivalent to the original.

For the sake of simplicity and conciseness, I consider just the fragment containing a

unary function type, but whose argument carries a usage annotation. The partially or-

dered semiring of usage annotations is arbitrary throughout. I also include an arbitrary

set of base types BaseTy via constructor ι.

data Ty : Set where

ι : BaseTy → Ty

⊸ : (rA : Ann × Ty) (B : Ty) → Ty

With only function types, the only term formers are application and λ-abstraction.

These are similar to the corresponding term formers in λR, but application scales

its argument in accordance with the usage annotation of the function type, and λ-

abstraction binds a variable with the given usage annotation. For convenience, I define

an alias Term for the open family of terms in this type system of unspecified (∞) size.

data L : Set where

‘app ‘lam : (rA : Ann × Ty) (B : Ty) → L

165

Chapter 8. Applications

system : System

system = L ▷ λ where

(‘app rA@(r , A) B) → ⟨ []c ‘⊢ rA⊸ B ⟩ ‘∗ r ‘· ⟨ []c ‘⊢ A ⟩ ‘_ B

(‘lam rA B) → ⟨ [rA]c ‘⊢ B ⟩ ‘_ rA⊸ B

Term = [system , ∞]_⊢_

The NbE model of types is given by _⊨_. It is defined by induction on the type.

The base type is interpreted by terms of base type, while the function type is inter-

preted by the Kripke function space (essentially a special case of Kripke with ∆ = rA,

though reusing the Kripke definition causes difficulty for the termination checker). The

interpretation of the base type additionally requires a Lift of its universe level, because

□r produces a large type (a type in Set1). The largeness of □r comes from the largeness

of environments, and hence renamings, because of the relationally specified linear map.

⊨ : OpenFam (suc 0ℓ)

Γ ⊨ (ι α) = Lift (suc 0ℓ) (Term Γ (ι α))

Γ ⊨ (r , A)⊸ B = □r ((r · _⊨ A) −∗ _⊨ B) Γ

⊨ is a renameable family, as can be seen by cases on the type. It is renameable

at the base type because terms are renameable, and it is renameable at function type

because any open type formed using □r is renameable by composition of renamings. I

refer to this proof of renameability as ren^⊨.

Now that I am working with a specific syntax, I introduce the function reify[]. This

is a variant of the reify function given in section 7.5 usable only for rules that bind no

new variables — i.e., the parameter ∆ to Kripke is the empty context.

Lemma 8.2.1 (reify[]). We have a function of type KripkeV C (·) _ C for any open

families V and C.

Proof. Let b : KripkeV C (·) ΓA. We give b the identity renaming (corresponding to no

extension of the context), yielding b 1 :
(
(−)

V
=⇒ · −∗ (−)

C
A
)
Γ. By lemma 5.2.2, we

have that (−)
V

=⇒ · is equivalent to I∗, and by monoidal closure,
(
I∗ −∗ (−)

C
A
)

is

equivalent to (−)
C
A, so the result follows.

166

Chapter 8. Applications

The first part of the NbE algorithm I give is the evaluator. The evaluator interprets

terms into the model via an environment of values from the model, making it a clear

instance of the generic semantic traversal. Specifically, I fix both V and C to _⊨_

(allowing the conversion from semantic values to semantic terms to be given by the

identity function id), and provide the other required data as below. The case for λ-

abstraction is almost trivial, given that its job is to convert the Kripke function M

coming from the generic traversal into a value in the model of function type (i.e. a

Kripke function). The main thing we need to do is to wrap the argument to the

function into a singleton environment using [-]e. In the case for function application,

we use reify[] to get rid of the extraneous Kripke functions coming from the generic

traversal. Having done so for both subterms, we apply the value corresponding to M

(which is a Kripke function) to the value corresponding to N in an unextended context

(1r), with usage information divided up as in the original application.

evalSem : Semantics system _⊨_ _⊨_

evalSem .ren^V {A} = ren^⊨ {A}

evalSem .JvarK = id

evalSem .JconK (‘app _ _ , refl , M ∗⟨ sp+ ⟩ (⟨ sp* ⟩· N)) =

reify[] M 1r .app∗ sp+ (⟨ sp* ⟩· reify[] N)

evalSem .JconK (‘lam _ _ , refl , M) ρ .app∗ sp+ [N] =

M .get ρ .app∗ sp+ ([-]e [N])

The function eval is given by the appropriate instantiation of the generic traversal

semantics. Note that we have not yet shown that _⊨_ supports identity environments

(which requires the reify and reflect functions), so we cannot yet evaluate arbitrary open

terms.

eval : ∀ {Γ ∆} → [_⊨_] Γ ⇒e ∆ → {A : Ty} → Term ∆ A → Γ ⊨ A

eval ρ M = semantics evalSem ρ M

The final pieces of NbE are the reify and reflect functions. I give these the names

nbeReify and nbeReflect respectively to disambiguate from the reify and reify[] functions

of the framework. nbeReify and nbeReflect are defined mutually by recursion on the type,

167

Chapter 8. Applications

as is standard in NbE. Therefore, neither uses the generic semantic traversal, though

both make use of some of the general components I have developed in this thesis.

At base type, values in the model are terms (modulo Lift), so the conversion between

these and terms is trivial. At function type, nbeReify is given a Kripke function v and

aims to turn it into a normal form of function type. It does so in the canonical way

— introducing a λ-abstraction — and then aims to produce a term in an extended

context. Because of the context extension, we apply v using the renaming ↙r : Γ ++c

[0# • A]c to get it “back” to the original context. The splitting sp+ adds together

Γ, 0A and 0Γ, rA to get Γ, rA, while sp* scales down 0Γ, rA to 0Γ, 1A. Semantic value

v then wants a semantic value of type A, which it gets from reflecting the newly bound

variable into the model. Finally, v produces a semantic value, which a recursive call to

nbeReify at the smaller type B converts into a term (in fact, a normal form). Meanwhile,

nbeReflect at function type is given a syntactic function (in fact, a neutral form) and

aims to turn it into a Kripke function. To produce a Kripke function, we consider a

renaming ρ into Γ, splittings of the resultant context, and a semantic value N of type

A. To produce the value of type B, we recursively call nbeReflect at smaller type B,

but with a larger term formed by reifying N (again of smaller type) and applying it to

the term M. To make the application work, we must rename both M and N to ignore

the (empty) context extensions introduced by the application rule, and we must also

rename M by ρ to put M into the extended context the reflection is being done at.

nbeReify : ∀ {Γ} A → Γ ⊨ A → Term Γ A

nbeReflect : ∀ {Γ} A → Term Γ A → Γ ⊨ A

nbeReify (ι α) (lift v) = v

nbeReify ((r , A)⊸ B) v =

‘con (‘lam _ _ , refl ,

nbeReify B (v ↙r .app∗ (mkc sp+) (⟨ sp* ⟩·c

nbeReflect A (‘var (lvar (↘ here) refl (≤*-refl ++n [≤-refl]n))))))

where

sp+ : ∀ {s t} {P : Vector Ann s} {Q : Vector Ann t} →

(P ++ Q) ≤[(P ++ 0*) +* (0* ++ Q)]

168

Chapter 8. Applications

sp+ = +*-identity↘ _ ++n +*-identity↙ _

sp* : ∀ {s r} → (0* {s} ++ [r]) ≤[r *l (0* ++ [1#])]

sp* = (mk λ _ → ≤-reflexive (sym (annihilr _))) ++n [*.identity .proj2 _]n

nbeReflect (ι α) M = lift M

nbeReflect ((r , A)⊸ B) M ρ .app∗ (mkc sp+) (⟨ sp* ⟩·c N) =

nbeReflect B (‘con (‘app _ _ , refl ,

ren (↙r ′ []n ⟩⟩r ρ) M ∗c⟨ sp+ ⟩ ⟨ sp* ⟩·c nbeReify A (ren^⊨ N (↙r ′ []n))))

Finally, we compose eval, nbeReify, and nbeReflect to get the normaliser nbe. The

definition of nbe uses eval to interpret the term into the model, and then uses nbeReify

to read the semantic value back as a term (a normal form). However, as noted earlier,

we need to give an environment of type Γ
⊨

=⇒ Γ to eval in order to interpret an open

term in its own context. I provide this environment via lemma 5.2.7, which says that if

we have a mapping from variables in Γ to values in Γ, we can get the desired identity

environment. The required map is given in identityEnv^⊨ by turning the variable into

a term using ‘var and then applying nbeReflect. The definition identityEnv^⊨ is marked

as an instance so that it is picked up by id^Env.

instance

identityEnv^⊨ : IdentityEnv _⊨_

identityEnv^⊨ .pure x = nbeReflect _ (‘var x)

nbe : ∀ {Γ A} → Term Γ A → Term Γ A

nbe M = nbeReify _ (eval id^Env M)

The main limitation of this example is that the results are not specified as being

in normal form by their type. Ideally, we would have a syntax of normal and neutral

forms for nbe and supporting functions to target. We can produce such a syntax —

similarly to how Allais et al. [2021] produce a syntax for bidirectional type checking

— but this syntax is difficult to work with because of the crucial restriction on the

allowable kind of variables — namely that variables can only appear as neutral forms,

169

Chapter 8. Applications

and not normal forms. I believe that this difficulty could be worked around via carefully

placed assertions that various contexts are well formed — and in particular that the

extended context introduced by a □r is well formed.

Also, I have not given an account of many of the connectives of λR. Of particular

interest would be the types with pattern-matching eliminators — I, ⊗, 0, ⊕, and !. I

believe these could be handled by ordinary techniques for NbE for sums — probably

not doing η-expansion for these types.

8.3 A denotational semantics

Standard denotational semantics falls out as a somewhat trivial case of Semantics. A lot

of work is done in the generic traversal semantics to maintain a V-environment, where

V is a reasonably variable-like semantic family. For a simple denotational semantics, we

set V to be variables

As an example denotational semantics for a semiring-annotated calculus, I take a

semantics in world-indexed relations. This is a refinement of the semantics given by

Abel and Bernardy [2020], which gives a way to extract parametricity theorems from

substructurally typed programs. Example theorems are that all linear terms act as

permutations on some fixed set of resources, and all monotonically typed terms are

really monotonic in the way the typing suggests they are.

For the sake of brevity, I use the same term language as in section 8.2, with a set of

base types and function types with a usage-annotated domain type.

As a running example, I take the usage annotations to be the 4-element variance

posemiring (example 4.2.4). I establish the property that all terms are monotonic in

their free variables. This monotonicity can be covariant or contravariant (or neither or

both) depending on the annotation of each free variable (respectively, ↑↑, ↓↓, ??, and

~~). This provides an additional example to those of Abel and Bernardy [2020].

In the semantics of this section, types are interpreted as world-indexed rela-

tions [Abel and Bernardy, 2020, Atkey and Wood, 2018]. A world-indexed relation

(WRel) over a poset of worlds W is a set set over which we have a W-indexed binary

relation ren satisfying a presheaf-like property subres with respect to the order on W.

170

Chapter 8. Applications

I declare the record type WRel to have no-eta-equality so that the usual η-law of

records does not apply to it. The lack of an η-law allows the connectives on WRel (e.g.

⊗R and _⊸R_, defined below) to be definitionally injective, helping the unification

in Agda’s elaborator.

record WRel {W : Set} (_≤_ : Rel W 0ℓ) : Set1 where

no-eta-equality

field

set : Set 0ℓ

rel : (a b : set) → W → Set

subres : ∀ {a b w w′} → w′ ≤ w → rel a b w → rel a b w′

Example 8.3.1. When W is the 1-element set, a world-indexed relation is just a set

equipped with a binary relation.

Morphisms (WRelMor) between world-indexed relations R and S consist of a mapping

set⇒ between the underlying sets such that, at each world w, the mapping preserves

relatedness from R to S. In the type of the field rel⇒, the world index is handled

implicitly via ___.

record WRelMor {W ≤w} (R S : WRel {W} ≤w) : Set where

constructor wRelMor

field

set⇒ : R .set → S .set

rel⇒ : ∀ {x y} → R .rel x y _ S .rel (set⇒ x) (set⇒ y)

When the poset of worlds forms a (relational) commutative monoid, such world-

indexed relations support a symmetric monoidal closed structure, with objects denoted

IR, _⊗R_, and _⊸R_,. These reuse the bunched connectives I∗, ∗, and −∗, now over

worlds rather than contexts. Their definitions are listed below.

IR : WRel _≤w_

IR .set = ⊤

171

Chapter 8. Applications

IR .rel _ _ = I∗

IR .subres sub I∗⟨ sp ⟩ = I∗⟨ ε-mono sub sp ⟩

⊗R : (R S : WRel _≤w_) → WRel _≤w_

(R ⊗R S) .set = R .set × S .set

(R ⊗R S) .rel (a , b) (a′ , b′) = R .rel a a′ ∗ S .rel b b′

(R ⊗R S) .subres sub (r ∗⟨ sp ⟩ s) =

r ∗⟨ •-mono sub ≤w-refl ≤w-refl sp ⟩ s

⊸R : (R S : WRel _≤w_) → WRel _≤w_

(R⊸R S) .set = R .set → S .set

(R⊸R S) .rel f g =

I
⋂

(_ × _) \ (x , y) → R .rel x y −∗ S .rel (f x) (g y)

(R⊸R S) .subres sub rf .app∗ sp xx =

rf .app∗ (•-mono ≤w-refl sub ≤w-refl sp) xx

The final piece of semantics we need is a bang operator. I allow the semantic bang

to be an arbitrary annotation-indexed functor on world-indexed relations. This functor

must respect all of the structure on the indices, making it a graded comonad over

multiplication, as well as being lax monoidal at any particular index r.

record Bang : Set1 where

field

!R : Ann → WRel _≤w_ → WRel _≤w_

!R-map : ∀ {r R S} → WRelMor R S → WRelMor (!R r R) (!R r S)

!R-0 : ∀ {r R} → r ≤ 0# → WRelMor (!R r R) IR

!R-+ : ∀ {r p q R} → r ≤ p + q →

WRelMor (!R r R) (!R p R ⊗R !R q R)

!R-1 : ∀ {r R} → r ≤ 1# → WRelMor (!R r R) R

!R-* : ∀ {r p q R} → r ≤ p * q → WRelMor (!R r R) (!R p (!R q R))

!R-I : ∀ {r} → WRelMor IR (!R r IR)

!R-⊗ : ∀ {r R S} → WRelMor (!R r R ⊗R !R r S) (!R r (R ⊗R S))

172

Chapter 8. Applications

The properties required of the semantic bang operator are slightly weaker than

those given by Abel and Bernardy [2020]. Specifically, the morphisms given by !R-

1, !R-I, and !R-⊗ only go one way, rather than being bi-implications as they are for

Abel and Bernardy [2020]. Abel and Bernardy need the stronger laws because of their

strong eliminator for tensor products, discussed in section 4.4.1. Also, I do not use

the non-idempotent intersection operators (which handle worlds in the same way as IR

and _⊗R_, but keep the underlying set the same, rather than using products of the

underlying sets), and thus do not have axioms for them. I avoid the need for non-

idempotent intersections by giving the semantics all at once, rather than first giving a

Set-semantics and then giving a WRel-semantics on top of it.

Example 8.3.2. With W being the 1-element set and annotations coming from the

variance semiring, we can define the following bang. It is always the identity on the set

component, while the relation component consists of flipping the relation for contravari-

ance and taking conjunctions to achieve both covariance and contravariance. When we

want neither covariance nor contravariance, we use the always true predicate on worlds

1̇. With the worlds being trivial, so too is the property subres.

!R : WayUp → WRel _≤w_ → WRel _≤w_

!R a R .set = R .set

!R ↑↑ R .rel = R .rel

!R ↓↓ R .rel x y = R .rel y x

!R ?? R .rel x y = 1̇

!R ~~ R .rel x y = R .rel x y ×̇ R .rel y x

!R a R .subres _ = id

Let us assume that we have a mapping ιJ_K from base types to world-indexed

relations. We extend this interpretation to all types via J_K, shown below, with the

function type being interpreted using ⊸R and !R. Contexts are interpreted by J_Kc,

using ⊗R and IR, and !R for singleton contexts. Terms are interpreted as morphisms by

the open family J_⊢_K. Variables are interpreted by lookupR (definition omitted).

173

Chapter 8. Applications

J_K : Ty → WRel _≤w_

J ι α K = ιJ α K

J (r , A)⊸ B K = !R r J A K⊸R J B K

J_⊢_K : OpenFam 0ℓ

J Γ ⊢ A K = WRelMor J Γ Kc J A K

lookupR : ∀ {Γ A} → Γ ⊐− A → J Γ ⊢ A K

The laws !R-0, !R-+, and !R-* lift from singleton contexts to all contexts via lem-

mas ctx-0, ctx-+, and ctx-*, with the latter saying that we have morphisms of type

J(rP)γK → !RrJPγK. We can see each of these three lemmas as ways to turn the alge-

braic structure of contexts into structured world-indexed relations — allowing us to use

general facts about IR, _⊗R_, and !R, respectively.

Now I give a Semantics. The choice of V as _⊐−_ is somewhat arbitrary, given

that a standard denotational semantics would not use intermediate environments in the

same sense as renaming, substitution, and evaluation. The only requirements are that

the choice of V respects renaming and yields inhabitants of the target family J_⊢_K.

Picking _⊐−_ means that we can use the already proven lemma ren^⊐− for the former

requirement; and we use lookupR — which we would have to provide somewhere anyway

— to yield semantic objects.

Meanwhile, for the logical rules, we ignore environments by using reify and reify[]

to just deal with morphisms in an extended context. The crucial structure of world-

indexed relations is given by lemmas curryR and uncurryR, which translate between

WRelMor (R ⊗R S) T and WRelMor R (S⊸R T). Also, map-⊗R implements the ten-

sor product of world-indexed relation morphisms. With these lemmas, the interpreta-

tions of λ-abstraction and application are straightforward. For λ-abstraction, we have

JΓ, rAK = JΓK ⊗R !RrJAK, so we just need to use curryR to get the desired semantic func-

tion in the original context. For application, we are producing the composition pictured

in figure 8.1. In this picture, I ignore the possible subusaging between P + rQ and the

original context for the sake of notational suggestiveness.

174

Chapter 8. Applications

J(P + rQ)γK ⊗

JPγK

JrQγK !rJQγK !rJAK

⊗

JPγK

JBK
ctx-+

idR

ctx-* n

m

Figure 8.1: Interpretation of application in the world-indexed relation semantics

Wrel : Semantics system _⊐−_ J_⊢_K

Wrel .ren^V = ren^⊐−

Wrel .JvarK = lookupR

Wrel .JconK (‘lam (r , A) B , ≡.refl , m) = curryR (reify m)

Wrel .JconK (‘app (r , A) B , ≡.refl , m ∗c⟨ sp+ ⟩ (⟨ sp* ⟩·c n)) =

uncurryR (reify[] m)

◦R map-⊗R idR (!R-map (reify[] n) ◦R ctx-* sp*)

◦R ctx-+ sp+

Then, the semantics of terms is given by the function semantics Wrel 1r, where 1r is

the identity renaming.

wrel : ∀ {sz Γ A} → [system , sz] Γ ⊢ A → J Γ ⊢ A K

wrel = semantics Wrel 1r

Example 8.3.3. We can make a subtraction function from primitive addition and

negation on integers. Subtraction is covariant in its first argument and contravariant in

its second argument. We give the definition in pseudocode, though it is also amenable

to the usage elaborator of section 8.1, suitably instantiated.

∼∼p : ↑↑Z⊸ ↑↑Z⊸ Z,∼∼n : ↓↓Z⊸ Z ⊢ minus : ↑↑Z⊸ ↓↓Z⊸ Z

minus := λx. λy. p x (n y)

After feeding in Agda’s addition and negation functions as the interpretations of the

175

Chapter 8. Applications

free variables (noting that they are both monotonic in the required way), we get the

following free theorem.

thm : x Z.≤ x′ → y′ Z.≤ y → x Z.+ (Z.- y) Z.≤ x′ Z.+ (Z.- y′)

8.4 Translating between λR and L/nL

In section 6.3.3, I gave what I claimed to be an encoding of Linear/non-Linear logic [Ben-

ton, 1994] as a syntax description. In this section, I rigorously state and prove the

correspondence between Benton’s definition of L/nL and my encoding of it. Then, I

give translations from this encoding to my encoding of λR, and vice versa, using two

generic semantic traversals. These results together should give us confidence that the

encoding of L/nL is correct up to logical equivalence.

8.4.1 Encoding L/nL

I will present translations between the systems given by figures 6.2 and 6.3.

I use S to range over both linear and intuitionistic variables. In this section, I use

the notations Γ ⊢ A and Γ ⊢ X without subscripts on the turnstile to refer to the

encoded version of the calculus. This notation keeps the encoded calculus distinct from

the reference L/nL calculus I am translating from and to.

The main difference between the original L/nL calculus and the encoded version is

that the encoded version contains some extra “junk”, not corresponding to anything in

the original L/nL calculus. This junk includes all of the wrinkles we saw when trans-

lating to and from DILL in section 4.5.1 — where in the semiring-annotated system,

variables annotated ω (corresponding to intuitionistic variables) can slip into having

annotation 1 or 0 whenever there are any algebraic manipulations of the context. In

linear/non-linear logic, this slipping causes extra problems because intuitionistic vari-

ables are supposed to be of a distinct sort to other (i.e., linear) variables. Additionally,

we have no means in the framework to correlate types with usage annotations, so we

must deal with free variables carefully to ensure the required correlation between linear

and intuitionistic types and annotations.

176

Chapter 8. Applications

With the above remarks in mind, I take it as clear how to translate the original

L/nL calculus into the encoded version, and just state the type of the translation in

proposition 8.4.1 without including a proof. In contrast, I spend most of this subsection

on the reverse translation, which I provide a proof sketch of in proposition 8.4.4.

Proposition 8.4.1. We can construct the following translations.

(Θ ⊢C X) → (ωΘ ⊢ X) (8.1)

(Θ; Γ ⊢L A) → (ωΘ, 1Γ ⊢ A) (8.2)

The key property needed to sensibly do the reverse translation is linear well-

formedness, as given by definition 8.4.2. Linear well-formedness says that variables

of linear type have linear usage annotations. It does not say anything about intu-

itionistic types and usage annotations for two reasons. First, talking about ω is not

sufficiently stable. As we work up a derivation, the “slip” described earlier says that

usage annotations will tend to get larger, i.e. more precise. Therefore, it makes more

sense to make conditions of being greater than or equal to some collection of usage

annotations. Second, it turns out to be unnecessary to add any conditions on variables

with intuitionistic type, because we can just treat them as if they were annotated ω. We

can forget the specificness of annotations 0 and 1 when not needed, because whatever

a specifically annotated variable can do can be done by an ω-annotated variable.

Definition 8.4.2. A semiring-annotated context for L/nL is linearly well formed when

all linear variables are annotated either 0 or 1.

Lemma 8.4.3. If Γ is linearly well formed and M : (Γ ⊢ S), then the context of every

subterm of M is linearly well formed.

Proof. This lemma follows by inspection of the syntax description (figure 6.3). In the

subterms, the linear variables in Γ are only changed by binding new variables (all

instances of which maintain linear well formedness) and by existing variables being

shared out or coerced (which never produces ω annotations from 0 or 1).

Linear well-formedness is the only condition needed for the translation given by

177

Chapter 8. Applications

proposition 8.4.4. We can translate a derivation with any such context, with no further

specification of its shape. In particular, the shape is not calculated from an original

L/nL context.

Proposition 8.4.4. Let ΓC be the list of variables of intuitionistic type in Γ. Let ΓL

be the list of variables of linear type in Γ with usage annotation 1. Then, whenever Γ

is linearly well formed, we can construct the following translations.

(Γ ⊢ X) → (ΓC ⊢C X) (8.3)

(Γ ⊢ A) → (ΓC ; ΓL ⊢L A) (8.4)

Proof. We proceed by mutual induction on the derivations.

First, I consider variables. Suppose we have Γ ⊐− S. If S is a linear type A, then

Γ contains one variable of type A annotated 1, while all of the other linear variables

are annotated 0 (by linear well formedness, we have no linear variables annotated ω).

Therefore, ΓL = A, and L-var applies. Otherwise, if S is an intuitionistic type X, then

C-var applies to yield ΓC ⊢C X.

For the logical rules, linear well formedness means that all variables of linear type act

linearly. Additionally, every L/nL rule requiring there to be no linear variables in scope

is guarded by □0+∗ or I∗ in the syntax description, excluding linear variables. Given

these behaviours, the two calculi correspond closely, and it is a matter of inspection (and

use of lemma 8.4.3 when using the induction hypothesis) to complete the proof.

8.4.2 Translating between L/nL and λR

Benton [1994, §3.3] gives syntactic translations back and forth between Linear/non-

Linear logic and the presentation of intuitionistic linear logic given by Benton et al.

[1993]. In this section, I give analogous translations between my encodings of L/nL and

λR as instances of the generic traversal semantics. More precisely, I instantiate λR to

the {0 > ω < 1} posemiring and restrict it to the fragment containing connectives I,

⊗,⊸, and !ω, matching the fragment of L/nL presented by Benton and in this section.

Notably, this fragment of λR excludes !0 and !1. I write !ω as just !, as in traditional

178

Chapter 8. Applications

(−)∗ : TyL/nL → TyλR

I∗ = I

(A⊗B)∗ = A∗ ⊗B∗

(A⊸ B)∗ = A∗⊸ B∗

(FX)∗ = !X∗

1∗ = I

(X × Y)∗ = !X∗ ⊗ !Y ∗

(X → Y)∗ = !X∗⊸ Y ∗

(GA)∗ = A∗

(−)∗ : CtxL/nL → CtxλR

((Rγ)∗)i = Riγ
∗
i

(−)◦ : TyλR → Tylin

I◦ = I

(A⊗B)◦ = A◦ ⊗B◦

(A⊸ B)◦ = A◦⊸ B◦

(!A)◦ = GFA◦

(−)◦ : 01ω× TyλR → Σf Tyf

(0A)◦ = (lin, A◦)

(1A)◦ = (lin, A◦)

(ωA)◦ = (int, GA◦)

(−)◦ : CtxλR → CtxL/nL

((Rγ)◦)i = Ri(Riγi)
◦

Figure 8.2: Translation of types between L/nL and λR

linear logic.

Under the above restrictions and conventions, Benton’s translations between the

types of ILL and L/nL can be used verbatim, and are reproduced in figure 8.2. Notably,

the image of each ILL type under the (−)o-translation falls in the linear types of L/nL.

In the other direction (the (−)∗-translation), we make extensive use of the !-type former

to translate the intuitionistic types of L/nL.

I extend (−)∗ to contexts pointwise on the type context. Note that this differs

from Benton’s translation of contexts in that the intuitionistic variables of L/nL are

translated using usage annotation ω, rather than type former !. A translation from

L/nL to DILL would probably similarly use DILL’s intuitionistic variables rather than

!.

For (−)◦, I use an extra step to avoid producing contexts that are not linearly

well formed per definition 8.4.2. Specifically, wherever there is an annotation ω in a

λR context, the corresponding type is wrapped in a G to make it intuitionistic. For

example, (0A, 1B,ωC)◦ = (0A◦, 1B◦, ωGC◦).

In Agda code, I define the (−)◦ operator on 01ω×TyλR (the one that introduces a G

179

Chapter 8. Applications

for each ω) via a view LIView [McBride and McKinna, 2004]. I define usage annotations

0 and 1 (u0 and u1 in Agda) to be linear, with only ω (uω) being intuitionistic. LIView

is a view because of the existence of liview : ∀ x → LIView x, and well behaved in the

sense that any two views of the same usage annotation are equal (witnessed by liview-

prop, not shown here). The translation from λR to L/nL takes cases between linear

and non-linear annotations at many points, so having these cases expressed as a view

avoids duplication of arguments between the cases for 0 and 1.

data Linear : Ann → Set where

u0-lin : Linear u0

u1-lin : Linear u1

data LIView : Ann → Set where

view-lin : ∀ {x} (l : Linear x) → LIView x

view-int : LIView uω

Theorem 8.4.5. Let S be an L/nL type, either linear or intuitionistic. Then, we can

translate any L/nL term to a λR term as follows.

(Γ ⊢L/nL S) → (Γ∗ ⊢λR S∗) (8.5)

Proof. The proof is mostly straightforward, largely following Benton’s translation. Sim-

ilarly to the denotational semantics of section 8.3, we may use a Semantics with V set

to ⊐−L/nL, and then set C ΓS := Γ∗ ⊢λR S∗. Whenever we have induction hypotheses

of Kripke type, we use the reify function for λR to get λR terms. Therefore, we are

essentially just doing a proof by induction on the structure of the input term.

Translating the F i rule into !i relies on the equivalence between duplicability (as

expressed by the □ premise connective) and having been scaled by ω (as expressed

by the ω · premise connective). This holds of the 01ω semiring, but not of general

semirings (and is not even stateable for general semirings because of the mention of ω).

The same reasoning is needed when translating the introduction rules for intuitionistic

connectives, because they always have □ed premises and are translated using !.

180

Chapter 8. Applications

As an example of translating an intuitionistic elimination rule, let us consider the

×e0 rule. I reproduce it here with explicit contexts.

Γ′ ≤ Γ Γ duplicable Γ ⊢L/nL X × Y
×e0

Γ′ ⊢L/nL X

Recall that (X × Y)∗ = !X∗ ⊗ !Y ∗. This means that we must pattern-match the

hypothesis to get variables ωX∗, ωY ∗ so as to be able to use the X∗ for the conclusion

and discard the Y ∗. The formal derivation is as follows. We are able to copy Γ∗ between

all of these subterms because its usage annotations are the same as those of Γ, which

is duplicable by the assumption in ×e0. The distinction between Γ′ and Γ is minor.

When we apply the ⊗e rule, we use the fact that Γ′ ≤ Γ + Γ, by the fact that Γ′ ≤ Γ

and Γ ≤ Γ+Γ. From then on, we need only think about Γ, which behaves well because

it is duplicable.

IH
Γ∗ ⊢λR !X∗ ⊗ !Y ∗

Var
Γ∗, 1!X∗, 0!Y ∗ ⊢λR !X∗ ∇

!e
Γ∗, 1!X∗, 1!Y ∗ ⊢λR X∗

⊗e
Γ∗ ⊢λR X∗

where ∇ :=

Var
Γ∗, 0!X∗, 1!Y ∗, ωX∗ ⊢λR !Y ∗ Var

Γ∗, 0!X∗, 0!Y ∗, ωX∗, ωY ∗ ⊢λR X∗
!e

Γ′∗, 0!X∗, 1!Y ∗, ωX∗ ⊢λR X∗

In the Agda proof, renaming is required to perform lots of minor functions that

we would ignore on paper. For example, the equation (Γ,∆)∗ = Γ∗,∆∗ — required

when induction hypotheses have newly bound variables — is not true definitionally.

Furthermore, because of the functional representation I use for contexts, it is not even

provable without function extensionality. Therefore, renaming is the simplest way to

get the required coercion. Such renamings perhaps could be avoided in most cases if

contexts were represented as non-functional lists.

181

Chapter 8. Applications

Theorem 8.4.6. We can translate from λR to the linear fragment of L/nL.

(Γ ⊢λR A) → (Γ◦ ⊢L/nL A◦) (8.6)

Proof. We use the same simple induction scheme as in theorem 8.4.5, but with the places

of λR and L/nL switched. However, some of the rule translations are more complex,

mainly caused by the complexity of the (−)◦ translation on contexts.

For variables, we must consider separately the cases where the variable being used

is annotated 1 and ω. The case for a variable 1A is straightforward, and translates

directly to an L/nL variable 1A◦. A variable ωA, however, is translated to ωGA◦, so

we must eliminate the G in order to get the conclusion A◦. The Ge rule requires its

context to be duplicable, which is true by the fact that all of the unused variables are

annotated either 0 or ω (because they are all less than or equal to 0), and the variable

being used is annotated ω.

Most logical rules are handled very similarly to each other, so I will just translate

the ⊗i rule as an example. I reproduce it here with explicit contexts (split into their

usage and typing contexts).

R ≤ P +Q Pγ ⊢λR A Qγ ⊢λR B
⊗i

Rγ ⊢λR A⊗B

We cannot do a naïve translation to the corresponding application of the ⊗i rule

of L/nL because (Rγ)◦, (Pγ)◦, and (Qγ)◦ may all have different typing contexts. For

example, consider the following instance. There are two problems. First, our induction

hypotheses give us contexts containing C◦, where our conclusion wants a context con-

taining GC◦. Second, 1GC◦ is not linearly well formed, because an intuitionistic type

is given a linear annotation. It is therefore difficult to work with such a sequent.

1C ⊢λR A 1C ⊢λR B
⊗i

ωC ⊢λR A⊗B
⇝

1C◦ ⊢L/nL A◦

..... ?
1GC◦ ⊢L/nL A◦

1C◦ ⊢L/nL B◦

..... ?
1GC◦ ⊢L/nL B◦

⊗i
ωGC◦ ⊢L/nL A◦ ⊗B◦

182

Chapter 8. Applications

To fix these issues, firstly I overwrite the context-splitting given by the input term to

conform to the bottom-up style of definition 4.5.2. This means precisely that wherever

ω appears in the context of the conclusion, it will also appear in the context of all the

hypotheses. This gives the following partial derivation.

1C◦ ⊢L/nL A◦

..... ?
ωGC◦ ⊢L/nL A◦

1C◦ ⊢L/nL B◦

..... ?
ωGC◦ ⊢L/nL B◦

⊗i
ωGC◦ ⊢L/nL A◦ ⊗B◦

Then, I fix the discrepancy in types using substitution. In the running example, the

substitution needed for both subterms is of the type ωGC◦ ⊢L/nL
=⇒ 1C◦, which amounts

to a term of type ωGC◦ ⊢L/nL C◦, as follows. Note that Ge is only applicable thanks

to changing the usage annotation from 1 to ω in the previous step.

Var
ωGC◦ ⊢L/nL GC◦

Ge
ωGC◦ ⊢L/nL C◦

More generally, we may have to produce substitutions of type

0A◦, 1B◦, ωGC◦, ωGD◦ ⊢L/nL
=⇒ 0A◦, 1B◦, 1C◦, ωGD◦.

These can be produced pointwise, from substitutions of types 0A◦ ⊢L/nL
=⇒ 0A◦ and

1B◦ ⊢L/nL
=⇒ 1B◦ and ωGC◦ ⊢L/nL

=⇒ 1C◦ and ωGD◦ ⊢L/nL
=⇒ ωGD◦. We have just seen how to

produce the third of these, and the rest are identity substitutions.

The two sui generis rules to translate are the rules for the !-modality, with the

! of intuitionistic linear logic becoming the composite FG in linear/non-linear logic.

The way of handling !i is similar to the way of handling rules like ⊗i, but involving

multiplication/scaling by ω rather than addition. We have a similar difficult instance,

shown below, where an ω gets specialised to a 1 via the algebraic operation.

ω ≤ ω · 1 1C ⊢λR A
!i

ωC ⊢λR !A

Again, the solution is to fix up the operation to keep the more general ω, allowing us

183

Chapter 8. Applications

to apply F i and Gi, and the same substitution as before possibly including an application

of Ge as necessary.

Finally, the translation of !e is simple, but worth checking. I reproduce the rule

below with explicit contexts.

R ≤ P +Q Pγ ⊢λR !A Qγ, ωA ⊢λR B
!e

Rγ ⊢λR B

The main thing to note is that the translation of the context of the right-hand

premise, Qγ, ωA, is (Qγ)◦, ωGA◦ — i.e., the translation of contexts gives us a G thanks

to the ω usage annotation. Therefore, we do not have to eliminate the G, because the

right-hand subterm is expected to do it for us. Indeed, we have seen in previous cases

many uses of Ge already.

I translate the !e rule as follows. As in the ⊗i case, I pick P ′ and Q′ to fit bottom-up

form, and use the same substitutions as in that case to mend the terms arriving from

the induction hypotheses. Then, just Fe suffices.

R ≤ P ′ +Q′

...
(P ′γ)◦ ⊢L/nL FGA◦

...
(Q′γ)◦, ωGA◦ ⊢L/nL B◦

Fe
(Rγ)◦ ⊢L/nL B◦

8.5 Conclusion

In this chapter, I have provided a range of example syntaxes and operations on them,

defined with the help of the generic semantic traversal. Where Allais et al. [2021] give

examples which focus on using the semantic environment effectively, my examples focus

more on problems we can only work on using usage restrictions. These examples tie

together the two strands of this thesis — representation of syntax and semantics in

Agda and usage restrictions via semiring annotations.

Though all of the applications have been successfully completed, there are some

points in them where details of the framework have forced us into an unnatural or

suboptimal approach, relative to what we could achieve with a reimplementation of each

184

Chapter 8. Applications

specific calculus from first principles. Specifically, in the NbE example of section 8.2, I

was significantly hampered by the inability to cleanly exclude variables from the syntax

of normal forms, and in the encoding of a linear/non-linear calculus in section 8.4, we

were forced to consider variables with linear type but intuitionistic usage annotation

and vice versa. I will discuss these problems further, with suggestions of solutions, in

chapter 9.

185

Chapter 9

Conclusions

In this thesis, I have developed a foundation for semiring-annotated calculi presented in

natural deduction style. I have given a consolidated account of the semiring-annotated

calculus λR, including its relations to existing linear and modal calculi. As part of this,

I have adapted what I call bunched connectives from Rouvoet et al. [2020] as a way to

state the typing rules of the calculus as well as to work with the metatheory. The dis-

tinction between sharing and separating conjunction given by the bunched connectives

corresponds well to the notions of additive and multiplicative connectives in the object

language, respectively. Following this, I have given a novel linear algebra-based defini-

tion of environment for semiring-annotated calculi, together with a motivation which

may serve as a basis for the corresponding definition for other substructural systems.

The adequacy of this definition of environment is shown by my implementation of si-

multaneous renaming and substitution, as well as other operations on environments,

like composition of renamings and substitutions. The definition of environments, and

hence simultaneous renaming/substitution, is novel, but acts like the appropriate gen-

eralisation of environments for simply typed theories.

With the details of λR worked out, I then moved on to adapting the work of Al-

lais et al. [2021] so as to make it able to capture semiring-based usage restrictions, as

found in λR. The syntax descriptions of the resulting system are based on the bunched

connectives, and are shown to be expressive enough to encode calculi of a variety of

forms. In adapting the semantics, I am forced to be precise about sharing and sepa-

186

Chapter 9. Conclusions

rating bunched connectives, but largely add these as a refinement of the work of Allais

et al. [2021]. I provide the renaming and substitution operations for all expressible

calculi. I also provide more specialised examples of semantic traversals: a usage elabo-

rator, an NbE algorithm, a denotational semantics, and translations between different

calculi. The usage elaborator gives an unexpected example of generic programming,

which one could not write without syntax descriptions. Meanwhile, the NbE algorithm

gives further justification that I have the correct notion of environment for semiring-

annotated type systems. Together, the examples show the applicability and versatility

of the framework I have developed.

9.1 Future work

To conclude, I discuss various possible future directions of the work started in this

thesis.

Equality Perhaps the most fundamental missing piece from the metatheoretic account

of semiring-annotated calculi I have given in this thesis is equations between terms.

Reasoning about equality between terms and environments is a problem I have tried to

solve, but I have not arrived at a satisfactory solution in the time available to me.

I believe that the basic difficulty of giving an account for equality in a linear setting is

the proliferation of Σ-types. For example, describing equality between two applications

of &-I is immediate: Γ ⊢ (M,N) = (M ′, N ′) : A & B if and only if Γ ⊢ M = M ′ : A

and Γ ⊢ N = N ′ : B. However, to do the same with ⊗-I requires us to be careful

about the contexts of the subterms. The two applications of ⊗-I may a priori split

the context in different ways, and should only be equated when those splittings are

equal (in the appropriate sense). If the splittings are equal, then the contexts of the

subterms will line up, and only then can the subterms themselves be compared for

equality. These multiple stages come about because (T ∗ U) Γ is a Σ-type, and equality

of elements of Σ-types always follows this pattern. Such reasoning becomes even more

complex for environments, which are equivalent to iterated ∗-families. Additionally,

it is unclear what effect subsumption of contexts (like subusaging in this thesis or

187

Chapter 9. Conclusions

explicit structural rules in other calculi) should have on equality, particularly when the

subsumption commutes with parts of the subterms.

Polymorphism An important feature of most contemporary statically typed pro-

gramming languages is polymorphism. In particular, parametric polymorphism over

types can be used to significantly improve code reuse, and is well understood theoreti-

cally via System F and its variants. I have not considered polymorphism in this thesis,

and neither did Allais et al. [2021] in their paper, so whether it can be supported in the

framework presented earlier is an open question. However, both Schäfer et al. [2015]

and Kaiser et al. [2018] have applied similar work to polymorphic calculi via special

support, suggesting that it would be possible to modify the framework of this thesis in

a similar way.

A separate but related question concerns polymorphism over usage annotations.

The status of polymorphism over usage annotations is less well established both in

practice and in theory. Orchard et al. [2019] present an implementation allowing for

polymorphism of usage annotations, and even polymorphism over semirings, but provide

no more than example programs to justify the feature. This thesis provides no advance

on understanding annotation polymorphism, unless it can be encoded into a semiring

to fit the framework.

Structure of contexts As I have presented it, the work of Allais et al. [2021] has

two axes in which it is generic: the syntax, which can be controlled through syntax

descriptions to produce a wide range of calculi and features; and the semantics, where

we can produce a wide range of maps out of terms with the help of environments. To

this, the work of this thesis has added a third axis of genericity: the usage discipline of

variables, as described by a partially ordered semiring.

Starting at least with the bunched connectives in section 4.3, if not earlier when

talking about usage contexts forming modules over the semiring of annotations, I have

made productive use of abstractions over the basic usage annotations throughout this

thesis. These abstractions suggest a next step of completely abstracting away much of

the representation of contexts and their individual entries. One may imagine that it

188

Chapter 9. Conclusions

is possible to develop a framework in which the required operations and properties of

contexts are axiomatised, similar to how usage annotations are axiomatised to form a

semiring in this thesis, and to how categories-with-families models are defined [Castellan

et al., 2019, Dybjer, 1995]. Instances of such a framework would include the work of

Rouvoet et al. [2020], which uses a very similar bunched connective abstraction over a

very different representation of contexts, based on relational interleaving of lists.

The use of semirings is motivated in this thesis and elsewhere largely because they

are general enough to cover a wide range of examples. However, I cannot claim to have

a derivation from first principles of why we should choose partially ordered semirings

over any of a range of similar algebraic structures. Additionally, some of the specific

constructions done in this thesis fit somewhat unnaturally with the semiring-based

approach. For example, when translating semiring-annotated systems to traditional

systems, I tended to need to make a bottom-up assumption (definitions 4.5.2 and 4.5.7)

so as to avoid some “junk” facts given by the semiring. Meanwhile, the usage elaborator

of section 8.1 eschews the “forward” computation of semiring operations in favour of

non-deterministic backwards computation, e.g., from a sum to the collection of possible

summands. Possibly consciously working more abstractly, as described in the previous

paragraph, would make a more natural structure appear.

If we are to retain an annotation-based approach to usage restrictions, then a possible

feature request that falls out of the encoding of linear/non-linear logic is to have some

sort of kinding system by which different kinds of types are annotated using different

sets of annotations. In the L/nL example, we would want linear types to be annotated

with 0 and 1, and intuitionistic types to be annotated with ω (as the sole element of

a trivial instance of an algebraic structure), with no crossover between the two kinds.

Algebraic means to handle such mixed-kind usage vectors may be inspired by the work

of Hart [1995], McBride and Nordvall Forsberg [2021] on dimensional analysis in linear

algebra.

Partiality As we have seen, the way additive and multiplicative rules are realised

algebraically is related to models of separation logic. Models of separation logic typically

189

Chapter 9. Conclusions

use partial commutative monoids to model a heap, so it is tempting to generalise the

commutative monoid of addition in our semirings to a partial commutative monoid.

However, we find that the most natural notion of partial semiring is degenerate, in the

sense that all partial semirings are actually (total) semirings.

Recall that a commutative monoid (or commutative monoid object) can be de-

fined in any symmetric monoidal category. A partial commutative monoid is exactly a

commutative monoid object in the category of sets and partial functions with the usual

monoidal product given by pairing of objects and morphisms (like the Cartesian product

in Set). However, semirings need a Cartesian category in order to state the interaction

equations between addition and multiplication. While the category of sets and partial

functions is not Cartesian, the standard way to manufacture a Cartesian category out of

a symmetric monoidal category C is to take the category of cocommutative comonoids

CComon(C). Intuitively, the cocommutative comonoid structure equips the underlying

object M with a delete map η : M → I and a duplicate map δ : M → M ⊗M which

are coherent with respect to each other. All morphisms in CComon(C) must respect η

and δ; in particular, both addition and multiplication must separately form bimonoids

in C together with the cocommutative comonoid.

The distributivity laws of semirings are stated below. I include these to show that

the cocommutative comonoids of a monoidal category give enough structure to state

these laws. The other laws — that all morphisms respect η and δ, that addition forms

a commutative monoid, and that multiplication forms a monoid — are standard in

symmetric monoidal category theory.

0

* = 0

η

=

0

*

190

Chapter 9. Conclusions

+

* =

δ

* *

+

+

* =

δ

**

+

It is well known that all commutative comonoids in (Set,×), and indeed any Carte-

sian monoidal category, are trivial, in the sense that every object of Set gives rise to

exactly one commutative comonoid. We find in the following two lemmas that this

property also holds of (Setpart,⊗).

Lemma 9.1.1. For each object X in (Setpart,⊗), there is a cocommutative comonoid

over X.

Proof. Let η(x) := () and δ(x) := (x, x), with both being defined for all x. Checking

that these satisfy the cocommutative comonoid laws is routine. Alternatively, we can

see that both η and δ, being total, are morphisms in Set, where it is well known that

they form a cocommutative comonoid. The equations in Set carry over to Setpart.

Lemma 9.1.2. For each object X in (Setpart,⊗), any comonoid over X is the one

described in lemma 9.1.1.

Proof. The left unit law says that, for all x and x′, we have ∃y. δ(x) = (y, x′) ∧ η(y) = ()

if and only if x = x′. Letting x′ be x and reading from right to left, we get that there

is some y such that δ(x) = (y, x) and η(y) = (). Symmetrically, from the right unit

law, we get some z such that δ(x) = (x, z) and η(z) = (). But because δ, being a

partial function, is deterministic, we have (y, x) = (x, z), giving us that y = z = x,

and δ(x) = (x, x). Moreover, because the chosen y is equal to x, we have for all x that

η(x) = ().

That a morphism f respects the η given in lemma 9.1.1 is equivalent to saying that

f is total. Therefore, all possible semiring operators in CComon(Setpart,⊗) are total,

meaning that there is a corresponding semiring in (Set,×).

191

Chapter 9. Conclusions

The above reasoning shows that semirings in the category of sets and partial func-

tions are not worth studying. If we want partiality, there appear to be two options.

The first option is to give up on multiplication. We could imagine replacing the binary

multiplication operator by a set of unary modalities satisfying fewer laws. In particular,

I make little use of addition on the left of a multiplication, and multiplying by 0 on the

left (as done by !0) is unwanted in some cases (such as when encoding DILL and PD, as

in section 4.5). With unary modalities, we could expect all of the required laws to be

expressible in a symmetric monoidal category. The second option is to use a different

notion of partiality. The notion of partiality given by the category of sets and partial

functions is “strict”, in that composing with an everywhere-undefined function yields an

everywhere-undefined function. With a non-strict notion of partial function, we may be

able to have interesting partial semirings.

A separate variable sort Allais et al. [2021] mention as a limitation of their work

the fact that variables can have unrestricted type. This limitation carries over to the

work of this thesis. In many languages — for example, the µµ̃-calculus of section 6.3.2

and the normal/neutral forms of a λ-calculus — we would like to be able to restrict

the syntax so as to disallow variables of certain kinds. Such a restriction would make

it easier to construct traversals over these syntaxes, which I have not attempted in this

thesis.

In private communication, Allais has suggested a simple solution to this problem by

which the type of variable types and the type of term types are distinct, and related

by an arbitrary relation R. Each use of the ‘var constructor then requires a proof that

R relates the type of the variable picked to the type of the conclusion desired. For

example, in the syntax of normal/neutral forms, we let the variable types be just the

types, while the term types are types tagged with whether the term is normal or neutral.

The relation R relates equal types where the term type is marked neutral. Allais also

suggests that such a scheme could be used to bind patterns in the context, with the

relatedness proof serving as a path through the pattern to a variable of the desired

type. It remains non-trivial to work out the appropriate notion of renaming, and more

192

Chapter 9. Conclusions

generally the appropriate notion of environment, in this setting, which I leave to future

work.

Logical frameworks I discussed in section 3.3.5 two previous approaches to repre-

senting linear languages in logical frameworks. The work of this thesis should help in

adapting the first approach — making a new logical framework with direct support

for linearity — to a broader range of substructural calculi. In particular, the bunched

premise connectives give candidates for the required type formers in such a logical frame-

work. On the other hand, the second approach — to use an existing non-linear logical

framework but include a linear predicate — should be easy to adapt to semiring-

annotated systems by replacing the linear predicate by a relation between semiring

elements and term -> term weak functions.

Fitch-style systems I mentioned in section 3.3.4 an alternative way to present modal

logics, namely Fitch-style natural deduction systems. These appear to be largely irrec-

oncilable with the work of this thesis due to the fact that the □-elimination rule is very

sensitive to the context. A general treatment of Fitch-style syntaxes, comparable to

the treatment of semiring-indexed syntaxes given in this thesis, would probably have to

assume a □ connective whose behaviour was determined as part of the structural rules

of the calculus.

193

Bibliography

M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of

Functional Programming, 1(4):375–416, 1991. doi: 10.1017/S0956796800000186.

M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A Core Calculus of Dependency.

In POPL ’99, pages 147–160, 1999.

Andreas Abel. Miniagda: Integrating sized and dependent types. In Ekaterina Komen-

dantskaya, Ana Bove, and Milad Niqui, editors, Partiality and Recursion in In-

teractive Theorem Provers, PAR@ITP 2010, Edinburgh, UK, July 15, 2010, vol-

ume 5 of EPiC Series, pages 18–33. EasyChair, 2010. doi: 10.29007/322q. URL

https://doi.org/10.29007/322q.

Andreas Abel. Check needed when ∞ < ∞ is ok for sizes, 2015. URL https://github.

com/agda/agda/issues/1201.

Andreas Abel and Jean-Philippe Bernardy. A unified view of modalities in type systems.

Proc. ACM Program. Lang., 4(ICFP), August 2020. doi: 10.1145/3408972. URL

https://doi.org/10.1145/3408972.

Andreas Abel and Brigitte Pientka. Higher-order dynamic pattern unification for

dependent types and records. In C.-H. Luke Ong, editor, Typed Lambda Cal-

culi and Applications - 10th International Conference, TLCA 2011, Novi Sad, Ser-

bia, June 1-3, 2011. Proceedings, volume 6690 of Lecture Notes in Computer Sci-

ence, pages 10–26. Springer, 2011. doi: 10.1007/978-3-642-21691-6_5. URL

https://doi.org/10.1007/978-3-642-21691-6_5.

194

https://doi.org/10.29007/322q
https://github.com/agda/agda/issues/1201
https://github.com/agda/agda/issues/1201
https://doi.org/10.1145/3408972
https://doi.org/10.1007/978-3-642-21691-6_5

Bibliography

The Agda Development Team. Agda 2.6.3, 2023. URL https://agda.readthedocs.

io/en/v2.6.3/.

Guillaume Allais. Typing with Leftovers - A mechanization of Intuitionistic

Multiplicative-Additive Linear Logic. In TYPES 2017, pages 1:1–1:22, 2018. ISBN

978-3-95977-071-2. doi: 10.4230/LIPIcs.TYPES.2017.1.

Guillaume Allais. Generic level polymorphic n-ary functions. In David Darais and

Jeremy Gibbons, editors, Proceedings of the 4th ACM SIGPLAN International

Workshop on Type-Driven Development, TyDe@ICFP 2019, Berlin, Germany, Au-

gust 18, 2019, pages 14–26. ACM, 2019. doi: 10.1145/3331554.3342604. URL

https://doi.org/10.1145/3331554.3342604.

Guillaume Allais, James Chapman, Conor McBride, and James McKinna. Type-and-

scope safe programs and their proofs. In Proceedings of the 6th ACM SIGPLAN

Conference on Certified Programs and Proofs, CPP 2017, page 195–207, New York,

NY, USA, 2017. Association for Computing Machinery. ISBN 9781450347051. doi:

10.1145/3018610.3018613. URL https://doi.org/10.1145/3018610.3018613.

Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James McKinna.

A type- and scope-safe universe of syntaxes with binding: their semantics and proofs.

J. Funct. Program., 31:e22, 2021. doi: 10.1017/S0956796820000076. URL https:

//doi.org/10.1017/S0956796820000076.

Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda terms using

generalized inductive types. In In Computer Science Logic, pages 453–468. Springer-

Verlag, 1999.

Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. Monads need not be endo-

functors. Log. Methods Comput. Sci., 11(1), 2015. doi: 10.2168/LMCS-11(1:3)2015.

URL https://doi.org/10.2168/LMCS-11(1:3)2015.

Michael Arntzenius. Tones and types. URL:http://www.rntz.net/files/tones.pdf,

page 14, 2019.

195

https://agda.readthedocs.io/en/v2.6.3/
https://agda.readthedocs.io/en/v2.6.3/
https://doi.org/10.1145/3331554.3342604
https://doi.org/10.1145/3018610.3018613
https://doi.org/10.1017/S0956796820000076
https://doi.org/10.1017/S0956796820000076
https://doi.org/10.2168/LMCS-11(1:3)2015

Bibliography

Robert Atkey. The syntax and semantics of quantitative type theory. In LICS ’18:

33rd Annual ACM/IEEE Symposium on Logic in Computer Science, July 9–12, 2018,

Oxford, United Kingdom, 2018. doi: 10.1145/3209108.3209189.

Robert Atkey and James Wood. Context constrained computation. In 3rd Workshop

on Type-Driven Development (TyDe ’18), Extended Abstract, 2018.

Brian Aydemir, Aaron Bohannon, and Stephanie Weirich. Nominal reasoning tech-

niques in Coq. In International Workshop on Logical Frameworks and Meta-

Languages:Theory and Practice (LFMTP), Seattle, WA, USA, August 2006.

Andrew Barber. Dual intuitionistic linear logic. Technical report, University of Edin-

burgh, 1996.

H. P. Barendregt. Lambda Calculi with Types, page 117–309. Oxford University Press,

Inc., USA, 1993. ISBN 0198537611.

Marcin Benke, Peter Dybjer, and Patrik Jansson. Universes for generic programs and

proofs in dependent type theory. Nordic J. of Computing, 10(4):265–289, dec 2003.

ISSN 1236-6064.

Nick Benton, Chung-Kil Hur, Andrew Kennedy, and Conor McBride. Strongly typed

term representations in coq. J. of Autom Reasoning, 49(2), 8 2012. ISSN 0168-7433.

doi: 10.1007/s10817-011-9219-0.

P. N. Benton, Gavin M. Bierman, Valeria de Paiva, and Martin Hyland. A term calculus

for intuitionistic linear logic. In Typed Lambda Calculi and Applications, volume 664

of LNCS, pages 75–90. Springer, 1993. doi: 10.1007/BFb0037099.

P.N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. pages

121–135. Springer-Verlag, 1994.

Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional

for typed lambda-calculus. In Proceedings of the Sixth Annual Symposium on Logic

in Computer Science (LICS ’91), Amsterdam, The Netherlands, July 15-18, 1991,

196

Bibliography

pages 203–211. IEEE Computer Society, 1991. doi: 10.1109/LICS.1991.151645. URL

https://doi.org/10.1109/LICS.1991.151645.

Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and

Arnaud Spiwack. Linear haskell: Practical linearity in a higher-order polymorphic

language. Proc. ACM Program. Lang., 2(POPL), dec 2017. doi: 10.1145/3158093.

URL https://doi.org/10.1145/3158093.

Marc Bezem, Thierry Coquand, Peter Dybjer, and Martín Escardó. Type theory with

explicit universe polymorphism. In Delia Kesner and Pierre-Marie Pédrot, editors,

28th International Conference on Types for Proofs and Programs, TYPES 2022, June

20-25, 2022, LS2N, University of Nantes, France, volume 269 of LIPIcs, pages 13:1–

13:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi: 10.4230/LIPIcs.

TYPES.2022.13. URL https://doi.org/10.4230/LIPIcs.TYPES.2022.13.

Aleš Bizjak and Lars Birkedal. On models of higher-order separation logic. Elec-

tronic Notes in Theoretical Computer Science, 336:57–78, 2018. ISSN 1571-0661. doi:

https://doi.org/10.1016/j.entcs.2018.03.016. URL https://www.sciencedirect.

com/science/article/pii/S1571066118300197. The Thirty-third Conference on

the Mathematical Foundations of Programming Semantics (MFPS XXXIII).

V.A.J. Borghuis. Coming to terms with modal logic : on the interpretation of modalities

in typed lambda-calculus. PhD thesis, Mathematics and Computer Science, 1994.

Edwin C. Brady. Idris 2: Quantitative type theory in practice. In Anders Møller

and Manu Sridharan, editors, 35th European Conference on Object-Oriented Pro-

gramming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference),

volume 194 of LIPIcs, pages 9:1–9:26. Schloss Dagstuhl - Leibniz-Zentrum für Infor-

matik, 2021. doi: 10.4230/LIPIcs.ECOOP.2021.9. URL https://doi.org/10.4230/

LIPIcs.ECOOP.2021.9.

A. Brunel, M. Gaboardi, D. Mazza, and S. Zdancewic. A Core Quantitative Coeffect

Calculus. In ESOP 2014, pages 351–370, 2014.

197

https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1145/3158093
https://doi.org/10.4230/LIPIcs.TYPES.2022.13
https://www.sciencedirect.com/science/article/pii/S1571066118300197
https://www.sciencedirect.com/science/article/pii/S1571066118300197
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9

Bibliography

Simon Castellan, Pierre Clairambault, and Peter Dybjer. Categories with families:

Unityped, simply typed, and dependently typed. CoRR, abs/1904.00827, 2019. URL

http://arxiv.org/abs/1904.00827.

Iliano Cervesato and Frank Pfenning. A linear logical framework. Inf. Comput., 179(1):

19–75, 2002. doi: 10.1006/inco.2001.2951. URL https://doi.org/10.1006/inco.

2001.2951.

Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient resource management

for linear logic proof search. Theor. Comput. Sci., 232(1-2):133–163, 2000. doi:

10.1016/S0304-3975(99)00173-5. URL https://doi.org/10.1016/S0304-3975(99)

00173-5.

Vikraman Choudhury and Neel Krishnaswami. Recovering purity with comonads and

capabilities. Proc. ACM Program. Lang., 4(ICFP), aug 2020. doi: 10.1145/3408993.

URL https://doi.org/10.1145/3408993.

Alonzo Church. A formulation of the simple theory of types. J. Symb. Log., 5(2):56–68,

1940. doi: 10.2307/2266170. URL https://doi.org/10.2307/2266170.

The Coq Team. The Coq reference manual, 2023. URL https://coq.inria.fr/

refman/index.html#.

Karl Crary. Higher-order representation of substructural logics. SIGPLAN Not., 45(9):

131–142, September 2010. ISSN 0362-1340. doi: 10.1145/1932681.1863565.

Pierre-Louis Curien and Hugo Herbelin. The duality of computation. SIGPLAN Not.,

35(9):233–243, September 2000. ISSN 0362-1340. doi: 10.1145/357766.351262. URL

https://doi.org/10.1145/357766.351262.

Brian Day. On closed categories of functors. In Reports of the Midwest Category Seminar

IV, volume 137 of Lecture Notes in Mathematics, pages 1–38. Springer-Verlag, 1970.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming

language. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction - CADE

198

http://arxiv.org/abs/1904.00827
https://doi.org/10.1006/inco.2001.2951
https://doi.org/10.1006/inco.2001.2951
https://doi.org/10.1016/S0304-3975(99)00173-5
https://doi.org/10.1016/S0304-3975(99)00173-5
https://doi.org/10.1145/3408993
https://doi.org/10.2307/2266170
https://coq.inria.fr/refman/index.html#
https://coq.inria.fr/refman/index.html#
https://doi.org/10.1145/357766.351262

Bibliography

28 - 28th International Conference on Automated Deduction, Virtual Event, July 12-

15, 2021, Proceedings, volume 12699 of Lecture Notes in Computer Science, pages

625–635. Springer, 2021. doi: 10.1007/978-3-030-79876-5_37. URL https://doi.

org/10.1007/978-3-030-79876-5_37.

Stephen Dolan and Leo White. Stack allocation for ocaml, 2022. URL http:

//stedolan.net/talks/ocaml22.

Peter Dybjer. Internal type theory. In Stefano Berardi and Mario Coppo, editors, Types

for Proofs and Programs, International Workshop TYPES’95, Torino, Italy, June 5-

8, 1995, Selected Papers, volume 1158 of Lecture Notes in Computer Science, pages

120–134. Springer, 1995. doi: 10.1007/3-540-61780-9_66. URL https://doi.org/

10.1007/3-540-61780-9_66.

Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and

antiderivatives. Mathematical Structures in Computer Science, 28(7):995–1060, 2018.

doi: 10.1017/S0960129516000372.

Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoreti-

cal Computer Science, 309(1):1–41, 2003. ISSN 0304-3975. doi: https://doi.org/

10.1016/S0304-3975(03)00392-X. URL https://www.sciencedirect.com/science/

article/pii/S030439750300392X.

M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proceedings.

14th Symposium on Logic in Computer Science (Cat. No. PR00158), pages 193–202,

1999. doi: 10.1109/LICS.1999.782615.

Marcelo Fiore. Second-order and dependently-sorted abstract syntax. In 2008 23rd

Annual IEEE Symposium on Logic in Computer Science, pages 57–68, 2008. doi:

10.1109/LICS.2008.38.

Marcelo Fiore and Makoto Hamana. Multiversal polymorphic algebraic theories: Syn-

tax, semantics, translations, and equational logic. In 2013 28th Annual ACM/IEEE

Symposium on Logic in Computer Science, pages 520–529, 2013. doi: 10.1109/LICS.

2013.59.

199

https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
http://stedolan.net/talks/ocaml22
http://stedolan.net/talks/ocaml22
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1007/3-540-61780-9_66
https://www.sciencedirect.com/science/article/pii/S030439750300392X
https://www.sciencedirect.com/science/article/pii/S030439750300392X

Bibliography

Marcelo Fiore and Chung-Kil Hur. Second-order equational logic (extended abstract).

In Anuj Dawar and Helmut Veith, editors, Computer Science Logic, pages 320–335,

Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-15205-4.

Marcelo Fiore and Ola Mahmoud. Second-order algebraic theories. In Petr Hliněný

and Antonín Kučera, editors, Mathematical Foundations of Computer Science 2010,

pages 368–380, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-

642-15155-2.

Marcelo Fiore and Dmitrij Szamozvancev. Formal metatheory of second-order abstract

syntax. Proc. ACM Program. Lang., 6(POPL), jan 2022. doi: 10.1145/3498715. URL

https://doi.org/10.1145/3498715.

Murdoch J. Gabbay. A Theory of Inductive Definitions with alpha-Equivalence. phdthe-

sis, 2001. URL http://www.gabbay.org.uk/papers.html#thesis.

Murdoch J. Gabbay. The nom package, 2020. URL https://hackage.haskell.org/

package/nom-0.1.0.2/docs/Language-Nominal.html.

Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax with

variable binding. Formal Aspects of Computing, 13:341–363, 2002.

Murdoch James Gabbay and Michael Gabbay. Representation and duality of the

untyped λ-calculus in nominal lattice and topological semantics, with a proof

of topological completeness. Ann. Pure Appl. Log., 168(3):501–621, 2017. doi:

10.1016/j.apal.2016.10.001. URL https://doi.org/10.1016/j.apal.2016.10.001.

Dan R. Ghica and Alex I. Smith. Bounded linear types in a resource semiring. In ESOP

2014, pages 331–350, 2014.

Jean-Yves Girard. Linear logic. Theor. Comp. Sci., 50:1–101, 1987.

Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear logic: A mod-

ular approach to polynomial-time computability. Theor. Comput. Sci., 97(1):1–

66, 1992. doi: 10.1016/0304-3975(92)90386-T. URL https://doi.org/10.1016/

0304-3975(92)90386-T.

200

https://doi.org/10.1145/3498715
http://www.gabbay.org.uk/papers.html#thesis
http://www.gabbay.org.uk/papers.html#thesis
https://hackage.haskell.org/package/nom-0.1.0.2/docs/Language-Nominal.html
https://hackage.haskell.org/package/nom-0.1.0.2/docs/Language-Nominal.html
https://doi.org/10.1016/j.apal.2016.10.001
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1016/0304-3975(92)90386-T

Bibliography

Ananda Guneratne, Chad Reynolds, and Aaron Stump. Project report: Depen-

dently typed programming with lambda encodings in cedille. In David Van Horn

and John Hughes, editors, Trends in Functional Programming - 17th International

Conference, TFP 2016, College Park, MD, USA, June 8-10, 2016, Revised Se-

lected Papers, volume 10447 of Lecture Notes in Computer Science, pages 115–134.

Springer, 2016. doi: 10.1007/978-3-030-14805-8_7. URL https://doi.org/10.

1007/978-3-030-14805-8_7.

Robert Harper, Furio Honsell, and Gordon D. Plotkin. A framework for defining logics.

J. ACM, 40(1):143–184, 1993. doi: 10.1145/138027.138060. URL https://doi.org/

10.1145/138027.138060.

George W Hart. Multidimensional analysis: algebras and systems for science and engi-

neering. Springer Science & Business Media, 1995.

Fritz Henglein. Type inference with polymorphic recursion. ACM Trans. Program.

Lang. Syst., 15(2):253–289, 1993. doi: 10.1145/169701.169692. URL https://doi.

org/10.1145/169701.169692.

Hugo Herbelin. C’est maintenant qu’on calcule, au cœur de la dualité. Habilitation,

2005.

André Hirschowitz, Tom Hirschowitz, Ambroise Lafont, and Marco Maggesi. Variable

binding and substitution for (nameless) dummies. CoRR, abs/2209.02614, 2022. doi:

10.48550/arXiv.2209.02614. URL https://doi.org/10.48550/arXiv.2209.02614.

Martin Hofmann. Linear types and non-size-increasing polynomial time computation.

Inf. Comput., 183(1):57–85, 2003. doi: 10.1016/S0890-5401(03)00009-9. URL https:

//doi.org/10.1016/S0890-5401(03)00009-9.

William A Howard. The formulae-as-types notion of construction. To HB Curry: essays

on combinatory logic, lambda calculus and formalism, 44:479–490, 1980.

Jack Hughes, Daniel Marshall, James Wood, and Dominic Orchard. Linear Exponentials

as Graded Modal Types. In 5th International Workshop on Trends in Linear Logic

201

https://doi.org/10.1007/978-3-030-14805-8_7
https://doi.org/10.1007/978-3-030-14805-8_7
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/169701.169692
https://doi.org/10.1145/169701.169692
https://doi.org/10.48550/arXiv.2209.02614
https://doi.org/10.1016/S0890-5401(03)00009-9
https://doi.org/10.1016/S0890-5401(03)00009-9

Bibliography

and Applications (TLLA 2021), Rome (virtual), Italy, June 2021. URL https://

hal-lirmm.ccsd.cnrs.fr/lirmm-03271465.

Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-

Malo Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto,

Hugo Torres Vieira, and Gianluigi Zavattaro. Foundations of session types and be-

havioural contracts. ACM Comput. Surv., 49(1), apr 2016. ISSN 0360-0300. doi:

10.1145/2873052. URL https://doi.org/10.1145/2873052.

Andrej Ivašković, Alan Mycroft, and Dominic Orchard. Data-Flow Analyses as Effects

and Graded Monads. In Zena M. Ariola, editor, 5th International Conference on For-

mal Structures for Computation and Deduction (FSCD 2020), volume 167 of Leib-

niz International Proceedings in Informatics (LIPIcs), pages 15:1–15:23, Dagstuhl,

Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. ISBN 978-3-

95977-155-9. doi: 10.4230/LIPIcs.FSCD.2020.15. URL https://drops.dagstuhl.

de/opus/volltexte/2020/12337.

Jonas Kaiser, Steven Schäfer, and Kathrin Stark. Binder aware recursion over well-

scoped de bruijn syntax. In Proceedings of the 7th ACM SIGPLAN International

Conference on Certified Programs and Proofs, CPP 2018, page 293–306, New York,

NY, USA, 2018. Association for Computing Machinery. ISBN 9781450355865. doi:

10.1145/3167098. URL https://doi.org/10.1145/3167098.

Neel Krishnaswami. Strong normalization without logical relations,

2013. URL https://semantic-domain.blogspot.com/2013/05/

strong-normalization-without-logical.html.

Joachim Lambek. The mathematics of sentence structure. The American Mathematical

Monthly, 65(3):154–170, 1958. doi: 10.1080/00029890.1958.11989160. URL https:

//doi.org/10.1080/00029890.1958.11989160.

Olivier Laurent. Preliminary report on the yalla library. Coq Workshop, 2018. URL

https://perso.ens-lyon.fr/olivier.laurent/yalla/.

202

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271465
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271465
https://doi.org/10.1145/2873052
https://drops.dagstuhl.de/opus/volltexte/2020/12337
https://drops.dagstuhl.de/opus/volltexte/2020/12337
https://doi.org/10.1145/3167098
https://semantic-domain.blogspot.com/2013/05/strong-normalization-without-logical.html
https://semantic-domain.blogspot.com/2013/05/strong-normalization-without-logical.html
https://doi.org/10.1080/00029890.1958.11989160
https://doi.org/10.1080/00029890.1958.11989160
https://perso.ens-lyon.fr/olivier.laurent/yalla/

Bibliography

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme

Vouillon. The ocaml system, 2022. URL https://v2.ocaml.org/releases/5.0/

htmlman/index.html.

Daniel R. Licata, Michael Shulman, and Mitchell Riley. A fibrational framework for

substructural and modal logics. In FSCD 2017, pages 25:1–25:22, 2017. doi: 10.

4230/LIPIcs.FSCD.2017.25.

William Lovas and Karl Crary. Structural normalization for classical natural deduction,

2006.

J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proceedings of

the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL ’88, page 47–57, New York, NY, USA, 1988. Association for Com-

puting Machinery. ISBN 0897912527. doi: 10.1145/73560.73564. URL https:

//doi.org/10.1145/73560.73564.

Dhruv C. Makwana and Neelakantan R. Krishnaswami. NumLin: Linear Types for

Linear Algebra. In Alastair F. Donaldson, editor, 33rd European Conference on

Object-Oriented Programming (ECOOP 2019), volume 134 of Leibniz International

Proceedings in Informatics (LIPIcs), pages 14:1–14:25, Dagstuhl, Germany, 2019.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-111-5. doi: 10.

4230/LIPIcs.ECOOP.2019.14. URL http://drops.dagstuhl.de/opus/volltexte/

2019/10806.

Simon Marlow. Haskell 2010 language report. Technical report, 2010. URL https:

//www.haskell.org/onlinereport/haskell2010/.

Nicholas D. Matsakis and Felix S. Klock. The rust language. Ada Lett., 34(3):103–104,

oct 2014. ISSN 1094-3641. doi: 10.1145/2692956.2663188. URL https://doi.org/

10.1145/2692956.2663188.

Conor McBride. Type-preserving renaming and substitution, 2005. URL http://www.

strictlypositive.org/ren-sub.pdf.

203

https://v2.ocaml.org/releases/5.0/htmlman/index.html
https://v2.ocaml.org/releases/5.0/htmlman/index.html
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/73560.73564
http://drops.dagstuhl.de/opus/volltexte/2019/10806
http://drops.dagstuhl.de/opus/volltexte/2019/10806
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2692956.2663188
http://www.strictlypositive.org/ren-sub.pdf
http://www.strictlypositive.org/ren-sub.pdf

Bibliography

Conor McBride. A polynomial testing principle.

URL:https://personal.cis.strath.ac.uk/conor.mcbride/PolyTest.pdf, page 37, 2012.

Conor McBride. I got plenty o’ nuttin’. In A List of Successes That Can Change the

World, pages 207–233. Springer, 2016.

Conor McBride. Everybody's got to be somewhere. Electronic Proceedings in Theoretical

Computer Science, 275:53–69, jul 2018. doi: 10.4204/eptcs.275.6. URL https://doi.

org/10.4204%2Feptcs.275.6.

Conor McBride and James McKinna. The view from the left. J. Funct. Program., 14(1):

69–111, 2004. doi: 10.1017/S0956796803004829. URL https://doi.org/10.1017/

S0956796803004829.

Conor McBride and Fredrik Nordvall Forsberg. Type systems for programs respecting

dimensions. Series on Advances in Mathematics for Applied Sciences. World Sci-

entific Publishing Co. Pte Ltd, Singapore, January 2021. Advanced Mathematical

and Computational Tools in Metrology and Testing XII, AMCTMT XII ; Conference

date: 15-09-2020 Through 17-09-2020.

Craig McLaughlin, James McKinna, and Ian Stark. Triangulating context lemmas. In

Proceedings of the 7th ACM SIGPLAN International Conference on Certified Pro-

grams and Proofs, CPP 2018, page 102–114, New York, NY, USA, 2018. Associa-

tion for Computing Machinery. ISBN 9781450355865. doi: 10.1145/3167081. URL

https://doi.org/10.1145/3167081.

Dale Miller. Unification under a mixed prefix. J. Symb. Comput., 14(4):321–

358, 1992. doi: 10.1016/0747-7171(92)90011-R. URL https://doi.org/10.1016/

0747-7171(92)90011-R.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The definition of stan-

dard ml. Technical report, 1997. URL https://smlfamily.github.io/sml97-defn.

pdf.

204

https://doi.org/10.4204%2Feptcs.275.6
https://doi.org/10.4204%2Feptcs.275.6
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1145/3167081
https://doi.org/10.1016/0747-7171(92)90011-R
https://doi.org/10.1016/0747-7171(92)90011-R
https://smlfamily.github.io/sml97-defn.pdf
https://smlfamily.github.io/sml97-defn.pdf

Bibliography

Alan Mycroft. Polymorphic type schemes and recursive definitions. In Manfred Paul and

Bernard J. Robinet, editors, International Symposium on Programming, 6th Collo-

quium, Toulouse, France, April 17-19, 1984, Proceedings, volume 167 of Lecture Notes

in Computer Science, pages 217–228. Springer, 1984. doi: 10.1007/3-540-12925-1\

_41. URL https://doi.org/10.1007/3-540-12925-1_41.

Peter W. O’Hearn and David J. Pym. The logic of bunched implications. BULLETIN

OF SYMBOLIC LOGIC, 5(2):215–244, 1999.

Dominic A. Orchard, Vilem Liepelt, and Harley Eades. Quantitative program reasoning

with graded modal types. Proceedings of the ACM on Programming Languages, 3,

June 2019.

Tomas Petricek. Context-aware programming languages. PhD thesis, University of

Cambridge, 3 2017.

Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coeffects: a calculus of

context-dependent computation. In ICFP 2014, pages 123–135, 2014.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. In

Mathematical Structures in Computer Science, page 2001, 1999.

Frank Pfenning and Carsten Schürmann. System description: Twelf - A meta-logical

framework for deductive systems. In Harald Ganzinger, editor, Automated Deduction

- CADE-16, 16th International Conference on Automated Deduction, Trento, Italy,

July 7-10, 1999, Proceedings, volume 1632 of Lecture Notes in Computer Science,

pages 202–206. Springer, 1999. doi: 10.1007/3-540-48660-7_14. URL https://

doi.org/10.1007/3-540-48660-7_14.

Andrew M. Pitts. Locally nameless sets. Proc. ACM Program. Lang., 7(POPL):488–514,

2023. doi: 10.1145/3571210. URL https://doi.org/10.1145/3571210.

Jeff Polakow. Embedding a full linear lambda calculus in haskell. SIGPLAN Not., 50

(12):177–188, August 2015. ISSN 0362-1340. doi: 10.1145/2887747.2804309.

205

https://doi.org/10.1007/3-540-12925-1_41
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1145/3571210

Bibliography

D. Prawitz. Natural Deduction: A Proof-Theoretical Study. Dover Books on Mathemat-

ics. Dover Publications, 1965. ISBN 9780486446554. URL https://books.google.

co.uk/books?id=sJj3DQAAQBAJ.

J. Reed and B. C. Pierce. Distance makes the types grow stronger. In P. Hudak and

S. Weirich, editors, ICFP 2010, pages 157–168, 2010.

Greg Restall. An Introduction to Substructural Logics. New York: Routledge, 1999.

Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. Intrinsically-

typed definitional interpreters for linear, session-typed languages. In CPP 2020, pages

284–298, 2020. ISBN 9781450370974. doi: 10.1145/3372885.3373818.

The Rust team. The Rust programming language, 2023. URL https://rust-lang.

org/.

Steven Schäfer, Tobias Tebbi, and Gert Smolka. Autosubst: Reasoning with de bruijn

terms and parallel substitutions. In Christian Urban and Xingyuan Zhang, editors, In-

teractive Theorem Proving - 6th International Conference, ITP 2015, Nanjing, China,

August 24-27, 2015, Proceedings, volume 9236 of Lecture Notes in Computer Sci-

ence, pages 359–374. Springer, 2015. doi: 10.1007/978-3-319-22102-1_24. URL

https://doi.org/10.1007/978-3-319-22102-1_24.

Miki Tanaka and John Power. A Unified Category-theoretic Semantics for Binding

Signatures in Substructural Logics. Journal of Logic and Computation, 16(1):5–25,

02 2006. ISSN 0955-792X. doi: 10.1093/logcom/exi070. URL https://doi.org/10.

1093/logcom/exi070.

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations

of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced

Study, 2013.

Christian Urban. Nominal techniques in Isabelle/HOL. J. Autom. Reason., 40(4):

327–356, 2008. doi: 10.1007/s10817-008-9097-2. URL https://doi.org/10.1007/

s10817-008-9097-2.

206

https://books.google.co.uk/books?id=sJj3DQAAQBAJ
https://books.google.co.uk/books?id=sJj3DQAAQBAJ
https://rust-lang.org/
https://rust-lang.org/
https://doi.org/10.1007/978-3-319-22102-1_24
https://doi.org/10.1093/logcom/exi070
https://doi.org/10.1093/logcom/exi070
https://homotopytypetheory.org/book
https://doi.org/10.1007/s10817-008-9097-2
https://doi.org/10.1007/s10817-008-9097-2

Bibliography

Nachiappan Valliappan, Fabian Ruch, and Carlos Tom’e Corti nas. Normalization for

fitch-style modal calculi. Proc. ACM Program. Lang., 6(ICFP):772–798, 2022. doi:

10.1145/3547649. URL https://doi.org/10.1145/3547649.

Philip Wadler. Propositions as sessions. ACM SIGPLAN Notices, 47(9):273–286, 2012.

Michael Winikoff and James Harland. Deterministic resource management for the linear

logic programming language lygon. 1994.

James Wood and Robert Atkey. A linear algebra approach to linear metatheory. In

Ugo Dal Lago and Valeria de Paiva, editors, Proceedings Second Joint International

Workshop on Linearity & Trends in Linear Logic and Applications, Online, 29-30

June 2020, 2021. doi: 10.4204/EPTCS.353.10.

James Wood and Robert Atkey. A framework for substructural type systems. In Ilya

Sergey, editor, Programming Languages and Systems - 31st European Symposium

on Programming, ESOP 2022, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,

Proceedings, volume 13240 of Lecture Notes in Computer Science, pages 376–402.

Springer, 2022. doi: 10.1007/978-3-030-99336-8_14. URL https://doi.org/10.

1007/978-3-030-99336-8_14.

Hongwei Xi. Applied type system. In Stefano Berardi, Mario Coppo, and Ferruccio

Damiani, editors, Types for Proofs and Programs, pages 394–408, Berlin, Heidelberg,

2004. Springer Berlin Heidelberg. ISBN 978-3-540-24849-1.

Uma Zalakain and Ornela Dardha. π with leftovers: A mechanisation in agda. In

Kirstin Peters and Tim A. C. Willemse, editors, Formal Techniques for Distributed

Objects, Components, and Systems - 41st IFIP WG 6.1 International Conference,

FORTE 2021, Held as Part of the 16th International Federated Conference on Dis-

tributed Computing Techniques, DisCoTec 2021, Valletta, Malta, June 14-18, 2021,

Proceedings, volume 12719 of Lecture Notes in Computer Science, pages 157–174.

Springer, 2021. doi: 10.1007/978-3-030-78089-0_9. URL https://doi.org/10.

1007/978-3-030-78089-0_9.

207

https://doi.org/10.1145/3547649
https://doi.org/10.1007/978-3-030-99336-8_14
https://doi.org/10.1007/978-3-030-99336-8_14
https://doi.org/10.1007/978-3-030-78089-0_9
https://doi.org/10.1007/978-3-030-78089-0_9

Bibliography

Dengping Zhu and Hongwei Xi. Safe programming with pointers through stateful

views. In Manuel V. Hermenegildo and Daniel Cabeza, editors, Practical Aspects

of Declarative Languages, 7th International Symposium, PADL 2005, Long Beach,

CA, USA, January 10-11, 2005, Proceedings, volume 3350 of Lecture Notes in Com-

puter Science, pages 83–97. Springer, 2005. doi: 10.1007/978-3-540-30557-6_8. URL

https://doi.org/10.1007/978-3-540-30557-6_8.

208

https://doi.org/10.1007/978-3-540-30557-6_8

Bibliography

209

	Abstract
	List of Figures
	Acknowledgements
	Introduction
	Outline of the thesis
	Naming and notation conventions

	Mechanisation of simple types
	Agda primer
	Lexical structure
	Functions, -types
	Data types
	Clausal definitions
	Records, -types
	Colours

	Term representation
	Renaming and substitution
	Simultaneous renaming and simultaneous substitution
	Proofs of admissibility of renaming and substitution
	Syntactic kits

	Generic semantics
	Generic syntax
	Related work
	Autosubst
	Second order abstract syntax
	Substitution-based semantics
	Nominal techniques
	Logical frameworks

	Linearity and modality
	Intuitionistic S4 modal logic
	Intuitionistic Linear Logic
	The multiplicative-additive fragment
	The -modality
	Dual Intuitionistic Linear Logic

	Mechanisations and systematisations of substructural logics
	Typing with leftovers
	Yalla
	Co-De-Bruijn syntax
	Fitch-style modalities
	Systematisations of substructural logics

	Usage restriction via semirings
	Motivation for semiring annotations
	A usage-annotated calculus useR
	Other posemirings

	Bunched connectives
	useR stated using bunched connectives
	Connection with bunched logic
	Operations on bunched connectives

	Additions to and variations of useR
	Alternative object-language connectives
	Adding inductive types and recursion

	Representing existing linear and modal logics
	Dual Intuitionistic Linear Logic
	Pfenning-Davies

	Conclusion

	Renaming and substitution for useR
	What are linear renaming and substitution?
	Properties of linear environments
	Substitution is admissible in useR
	Comparison with Petricek's substitution lemma
	Conclusion

	Generic usage-annotated syntax
	Descriptions of Systems
	Terms of a =0mu=0muSystem
	More example syntaxes
	An encoding of graphs
	The system
	Duplicability and L/nL

	Conclusion

	Generic usage-aware semantics
	Linear relations in Agda
	A layer of syntax is functorial
	The Kripke function space
	Semantic traversal
	Reifying the Kripke function space
	Renaming and substitution
	Conclusion

	Applications
	A usage elaborator
	Normalisation by evaluation
	A denotational semantics
	Translating between useR and L/nL
	Encoding L/nL
	Translating between L/nL and useR

	Conclusion

	Conclusions
	Future work

	Bibliography

