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Introduction. We introduce a simply typed calculus λR that allows the use of variables to
be constrained by usage annotations in the context which binds them. λR is a generalisation
of existing core type theories for sensitivity analysis [RP10], dependency and confidentiality
[ABHR99], linearity [Bar96], and modal validity [PD99]. It is related to quantitative type
theory [Atk18], and various coeffect calculi [POM14, BGMZ14, GS14].

One of our insights is that because our usage annotations form a semiring, we have just
enough structure to talk about vectors and matrices. We find useful some constructs of linear
algebra, culminating in substitution phrased as application of a linear map.

An earlier version of this work was presented at TyDe 2018 [AW18]. The syntax and seman-
tics are formalised in Agda, with the code at https://github.com/laMudri/quantitative/.

Syntax. Our syntax is that of a simply typed λ-calculus modified to let us reason about how
variables are used. We assume a partially ordered semiring (posemiring) (R,E, 0,+, 1, ∗) of
usage annotations, with elements coloured in green for emphasis. The types are base types
(ιk), functions ((), tensor products (1, ⊗), with products (>, &), sums (0, ⊕), and graded
bangs (!ρ). A context ΓR is a combination of a typing context Γ and a usage context R.

ρ, π ∈ R A,B,C ::= ιk | A( B | 1 | A⊗B | > | A&B | 0 | A⊕B | !ρA

Γ,∆ ::= · | Γ, x : A P,Q,R ::= · | R, xρ ΓR ::= · | ΓR, x ρ
: A

Tensor products are eliminated by pattern matching (each side bound with annotation 1),
whereas with products are eliminated by projections. The difference is correspondingly seen in
the introduction rules, where the two halves of a tensor product have separate usage, and the
two halves of a with product have shared usage (illustrated below).

The rule ⊗-I is the archetypal use of +. The constraint P +Q E R says that R must be at
least as permissive as the accumulation of usages in P and Q. If the addition of the semiring is a
join of the order (as in the modality example below), these two types of product are equivalent.

ΓP `M : A ΓQ ` N : B P +Q E R
ΓR ` (M,N)⊗ : A⊗B

⊗-I
ΓR `M : A ΓR ` N : B

ΓR ` (M,N)& : A&B
&-I

With the graded bang, we see use of ∗ from the annotation posemiring. We read ρ ∗ π as
applying the action ρ to π. Introduction can be seen as scaling usage. Elimination is by pattern
matching, where we bind a new variable with whatever usage annotation the type gave us.

ΓP `M : A ρ ∗ P E R
ΓR ` [M ] : !ρA

!ρ-I
ΓP `M : !ρA ΓQ, x

ρ
: A ` N : B P +Q E R

ΓR ` let [x] = M in N : B
!ρ-E
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The var rule at x can only be used in a usage context R when x has a usage annotation as
permissive as 1, and all other variables have annotation as permissive as 0. In other words, x
can be used plainly, and all other variables can be discarded. This can be succinctly stated as
the constraint ex E R, where ex is the xth basis vector.

Substitution. We have two admissible rules leading up to the substitution lemma — sub-
usaging (subuse) and weakening (weak) — stated below. In the language of linear algebra,
weakening is embedding into a space of higher dimension.

Let | − | denote the length of a context. Usage contexts are taken to be row vectors. A
substitution σ from ΓP to ∆Q comprises a |Q|× |P| matrix Σ such that QΣ E P, and for each
(x : A) ∈ ∆, a term Mx such that ΓexΣ `Mx : A. Then, the simultaneous substitution lemma
is proven via the linearity of vector-matrix multiplication.

subuse
ΓP `M : A P E Q

ΓQ `M : A

weak
ΓP `M : A

ΓP ,∆0 `M : A

∆Q ` N : A

σ : ΓP ⇒ ∆Q

ΓP ` N [σ] : A
subst

The identity substitution, where each variable x is substituted by the term x, is witnessed
by the identity matrix.

Specialisations. To demonstrate the applicability of λR, and give examples of usage posemir-
ings, we show that it can be specialised to DILL [Bar96] and the modal type theory of Pfenning
and Davies [PD99].

DILL is a linear type theory where contexts are split between unrestricted and linear vari-
ables. To model linearity, we introduce the {0, 1, ω} posemiring. Annotation 0 denotes non-use,
1 linear use, and ω unrestricted use. Addition and multiplication are like the corresponding
natural number operations, with ω acting as an infinite element and 1 + 1 = ω in lieu of a
2 element. The order is generated by 0 E ω and 1 E ω, with no relation between 0 and 1.
This says that unrestricted variables can be both discarded and used. We translate a DILL
derivation of Γ; ∆ ` t : A into a λR derivation of Γω,∆1 `Mt : A. We translate DILL’s unan-
notated ! into !ω. In the translation, we make use of weak to ignore 0-use variables introduced
by usage separation. When translating the other way, we require that !0 and !1 do not occur in
the derivation we are translating. We translate a λR derivation of Γω,∆1,Θ0 ` M : A into a
DILL derivation of Γ; ∆ ` tM : A. This makes use of DILL’s Environment Weakening lemma
to correct cases where a λR subderivation was too precise about usage.

Pfenning and Davies’ modal type theory is already stated in the form of usage annotations. A
variable is annotated either true or valid . Furthermore, conclusions are only ever of true things.
This suggests that true is the 1 of the posemiring, and we introduce an unused annotation to
be the 0. The PD variable rule says that both true and valid assumptions are true, so we have
true E valid . Furthermore, all assumptions can be discarded, so unused is the bottom of the
order. Addition is the join of this order. The modality � is translated to !valid , which tells
us that valid ∗ π = valid for π 6= unused . unused and true are the annihilator and unit of ∗,
respectively. Having these definitions in place, the translations are similar to those for DILL.

Semantics. We also have a semantics that captures the intensional properties of programs via
families of Kripke indexed relations that refine a simple set-theoretic semantics. This allows us
to reconstruct the semantic properties of calculi in prior work for sensitivity analyis [RP10], and
dependency and confidentiality [ABHR99], as well as a new calculus for monotonicity analysis.
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